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1. Introduction

Supersymmetric fixed points of the renormalization group equations are believed to be

always either free or superconformally invariant. Thus the IR/UV behaviour of any super-

symmetric field theory, if nontrivial, is governed by a superconformal fixed point. Conse-

quently, the study of superconformal dynamics has a special place in the study of super-

symmetric field theories.

In radial quantization, the Hilbert space of any unitary superconformal field theory

may be decomposed into a direct sum over irreducible unitary, lowest energy representation

of the superconformal algebra. Such representations have been classified in every dimension

(see [1 – 5] and references therein); the list of these representations turn out to include a

special set of BPS representations. These representations are called ‘short’ because they

have fewer states than generic representations (we explain this more precisely below); they

also have the property that the energies of all states they host are determined by the other

conserved charges that label the representation.

Consider any fixed line of superconformal field theories labeled by some continuous

‘coupling constant’ λ. Suppose that, at any given value of λ, the Hilbert space of the

theory possesses some states that transform in short representations of the superconformal

algebra. Under an infinitesimal variation of λ the energies of the corresponding states can

only change if some of these representations jump from being short to long. However short

representation always contain fewer states than long representations with (almost) the same

quantum numbers. As a consequence, the jump of a single BPS representation from short

to long is inconsistent with the continuity of the spectrum of the theory as a function of

λ. Indeed such jumps are consistent with continuity only when they occur simultaneously

for a group of short representations that have the property that their state content is

identical to the content of a long representation. Such a bunch of BPS representations

can continuously be transmuted into a long representation, after which the energies of its

constituent states can be renormalized.

Consequently, a detailed study of all possible ways in which short representations

can combine up into long representations permits the the classification of superconformal

indices for superconformal field theories.1 In this paper we perform this study for super-

conformal algebras in d = 3, 5 and 6 and use our results to provide a complete classification

of all superconformal indices in these dimensions. In each of these cases, we also provide a

trace formula that, when evaluated in a superconformal field theory, may be used to extract

all these superconformal indices. This is the analogue of the trace formula described in [6]

1By a superconformal index we mean any function of the spectrum that is forced by the superconformal

algebra to remain constant under continuous variations of the spectrum.
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for the Witten index. Thus the Witten index we define in this paper constitutes the most

general superconformal Index in d = 3, 5, 6.2

We then proceed to compute our superconformal Witten Index for specific superconfor-

mal field theories. We first perform this computation for the superconformal field theories

on the world volume of N M2 and N M5 branes, at N = 1 (using field theory) and at

N = ∞ (using the dual supergravity description). We find that our index has significant

cancellations compared to the simple partition function over supersymmetric states. In

each case, the density of states in the Index grows slower in comparison to the supersym-

metric entropy. We also compute our index for some of the Chern Simons superconformal

field theories recently analyzed by Gaiotto and Yin [10]; and find that, in some cases, this

index undergoes a large N phase transition as a function of chemical potentials.

This paper is divided into 3 self-contained parts. Superconformal algebras in d = 3

are analyzed in section 2, in d = 6 are discussed in section 3 and in d = 5 are discussed

in 4. In each section, we describe the relevant algebra and its unitary representations.

We then discuss short representations and enumerate all possible ways in which short

representations can pair up into long representations. We use this enumeration to provide,

in each dimension, an exhaustive list of all indices that are protected by group theory alone.

We also provide a trace formula for a Witten type index that may be evaluated via a path

integral. These indices count states that are annihilated by a particular supercharge. We

discuss how the Witten Index may be expanded out in characters of the subalgebra of the

superconformal algebra that commutes with this supercharge. The coefficients of these

characters in the Witten Index are nothing but the indices mentioned above.

In d = 3, we evaluate our index in three different theories: (a) Supergravity on AdS4×
S7 (b) the worldvolume theory of a single M2 brane and (c) the Chern-Simons matter

theories recently discussed in [10]. In d = 6, we evaluate our index in supergravity on

AdS7 × S4 and in the worldvolume theory of a single M5 brane.

Finally, we wish to mention a subtlety that we have avoided in our discussion above.

Indices may fail to be protected if the spectrum of the theory contains a continuum [6, 11]

or is singular for some parameters. Lately, this issue has attracted interest in the context of

2 dimensional conformal field theories and we direct the reader to [12 – 14] for some recent

discussions.

2. d=3

2.1 The superconformal algebra and its unitary representations

The bosonic subalgebra of the d = 3 superconformal algebra is SO(3, 2)×SO(n) (the confor-

mal algebra times the R symmetry algebra). The anticommuting generators in this algebra

may be divided into the generators of supersymmetry (Q) and the generators of supercon-

formal symmetries (S). Supersymmetry generators transform in the vector representation

2The corresponding results are already known in d = 4 [7]. In 2 dimensions the analogue of the indices

we will study here is the famous ‘elliptic genus’ [8, 9] while superconformal algebras do not exist in d > 6.
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of the R-symmetry group SO(n),3 have charge half under dilatations (the SO(2) factor of

the compact SO(3)×SO(2) ∈ SO(3, 2)) and are spinors under the SO(3) factor of the same

decomposition. Superconformal generators Sµi = (Qiµ)
† transform in the spinor represen-

tation of SO(3), have scaling dimension (dilatation charge) (−1
2 ), and also transform in

the vector representation of the R-symmetry group. In our notation for supersymmetry

generators i is an SO(3) spinor index while µ is an R symmetry vector index.

We pause to remind the reader of the structure of the commutation relations and irre-

ducible unitary representations of the d = 3 superconformal algebra (see [4] and references

therein ). As usual, the anticommutator between two supersymmetries is proportional to

momentum times an R symmetry delta function, and the anticommutator between two su-

perconformal generators is obtained by taking the Hermitian conjugate of these relations.

The most interesting relationship in the algebra is the anticommutator between Q and S.

Schematically

{Sµi , Qjν} ∼ δµν T
j
i − δjiM

µ
ν

Here T ji are the U(2) ∼ SO(3) × SO(2) generators and Mµ
ν are the SO(n) generators.

Irreducible unitary lowest energy representations of this algebra possess a distinguished

set of lowest energy states called primary states. Primary states have the lowest value

of ǫ0 — the eigenvalue of the dilatation (or energy) operator — of all states in their

representation. They transform in irreducible representation of SO(3) × SO(n), and are

annihilated by all superconformal generators and special conformal generators.4

Primary states are special because all other states in the unitary (always infinite di-

mensional) representation may be obtained by acting on the primary with the generators

of supersymmetry and momentum. For a primary with energy ǫ0, a state obtained by the

action of k different Q s on the primary has energy ǫ0+ k
2 , and is said to be a state at the kth

level in the representation. The energy, SO(3) highest weight (denoted by j = 0, 1
2 , 1 . . .)

and the R-symmetry highest weights (h1, h2 . . . h[n/2])
5 of primary states form a complete

set of labels for the entire representation in question.

Any irreducible representation of the superconformal algebra may be decomposed into

a finite number of distinct irreducible representations of the conformal algebra. The latter

are labeled by their own primary states, which have a definite lowest energy and transform

in a given irreducible representation of SO(3). The state content of an irreducible repre-

sentation of the superconformal algebra is completely specified by the quantum numbers

of its constituent conformal primaries.

As we have mentioned in the introduction, the superconformal algebra possesses spe-

cial short or BPS representations which we will now explore in more detail. Consider a

representation of the algebra, whose primary transforms in the spin j representation of

SO(3) and in the SO(n) representation labeled by highest weights {hi} i = 1, · · · ,
[

n
2

]

.

3In the literature on the worldvolume theory of the M2 brane, the supercharges are taken to transform

in a spinor of SO(8). This is consistent with the statement above, because for n = 8, the vector and spinor

representations are related by a triality flip and a change of basis takes one to the other.
4i.e. all generators of negative scaling dimension.
5hi are eigenvalues under rotations in orthogonal 2 planes in Rn. Thus, for instance, {hi} = (1, 0, 0, . . . 0)

in the vector representation.
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We normalize primary states to have unit norm. The superconformal algebra — plus the

Hermiticity relation (Qiµ)
† = Sµi — completely determines the inner products between any

two states in the representation. All states in an unitary representation must have posi-

tive norm: however this requirement is not algebraically automatic, and, in fact imposes

a nontrivial restriction on the quantum numbers of primary states. This restriction takes

the form ǫ0 ≥ f(j, hi) as we will now explain.6

Let us first consider descendant states, at level one, of a representation whose primary

has SO(3) and SO(n) quantum numbers j, (h1 . . . h[n/2]). It is easy to compute the norm of

all such states by using the commutation relations of the algebra. As long as j 6= 0 it turns

out that the level one states with lowest norm transform in in the spin j− 1
2 representation

of the conformal group and in the (h1 +1, {hi}) i = 2, · · · ,
[

n
2

]

representation of SO(n) [4].

The highest weight state in this representation may be written explicitly as (see [16])

|Zn1〉 = A−
1 |h.w〉 ≡

(

Q
− 1

2
1 −Q

1
2
1 J−

(

1

2Jz

))

|h.w〉 (2.1)

where J− denotes the spin lowering operator of SO(3) and Q
± 1

2
1 are supersymmetry op-

erators with j = ±1
2 and (h1, h2, . . . h[n/2]) = (1, 0, . . . , 0). Here |h.w〉 is a highest weight

state with energy ǫ0, SU(2) charge j and SO(n) charge (h1, h2, . . . , h[n/2]). The norm of

this state is easily computed and is given by,

〈Zn1|Zn1〉 =

(

1 +
1

2j

)

(ǫ0 − j − h1 − 1) (2.2)

It follows that the non negativity of norms of states at level one (and so the unitarity of

the representation) requires that the charges of the primary should satisfy

ǫ0 ≥ j + h1 + 1 (2.3)

For j 6= 0 this inequality turns out to be the necessary and sufficient condition for a

representation to be unitary.

When the primary saturates the bound (2.3) the representation possess zero norm

states: however it turns out to be consistent to define a truncated representation by simply

deleting all zero norm states. This procedure yields a physically acceptable representation

whose quantum numbers saturate (2.3). This truncated representation is unitary (has only

positive norms) but has fewer states than the generic representation, and so is said to be

‘short’ or BPS.

The set of zero norm states we had to delete, in order to obtain the BPS representation

described above, themselves transform in a representation of the superconformal algebra.

This representation is labeled by the primary state |Zn1〉 (see (2.1)).

Let us now turn to the special case j = 0. In this case |Zn1〉 is ill defined and does

not exist; no states with its quantum numbers occur at level one. The states of lowest

norm at level one transform in the spin half SO(3) representation, and have SO(n) highest

6These techniques have been used in the investigation of unitarity bounds for conformal and supercon-

formal algebras in [15, 1 – 4, 16].
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weights h′1 = h1 + 1, {hi} i = 2, · · · , n2 . The highest weight state in this representation is

|Zn2〉 = A+
1 |h.w.〉 ≡ Q

1
2
1 |h.w〉. The norm of this state is (ǫ0 − h1). Unitarity thus imposes

the constraint ǫ0 ≥ h1. However, in this case, this condition is necessary but not sufficient

to ensure unitarity, as we now explain.

As we have remarked above, the state |Zn1〉 = A−
1 |h.w〉 is ill defined when j = 0.

However |s2〉 =
(

A+
1 A

−
1

)

|h.w〉 = Q
1
2
1Q

− 1
2

1 |h.w〉 is well defined even in this situation (when

j = 0). The norm of this state is easily computed and is given by,7

〈s2|s2〉 = (ǫ0 + j − h1)(ǫ0 − j − h1 − 1). (2.4)

It follows that, at j = 0, the positivity of norm of all states requires either that

ǫ0 ≥ h1+1 or that ǫ0 = h1. This turns out to be the complete set of necessary and sufficient

conditions for the existence of unitary representations. Representations with j = 0 and

ǫ0 = h1 + 1 or ǫ0 = h1 are both short. The representation at ǫ0 = h1 is an isolated short

representation since there is no representation in the energy gap h1 ≤ ǫ0 ≤ (h1 +1); its first

zero norm state occurs at level one. The first zero norm state in the j = 0 representation

at ǫ0 = h1 + 1 occurs at level 2 and is given by |s2〉.
In summary, short representations occur when the highest weights of the primary state

satisfy one of the following conditions [4].

ǫ0 =j + h1 + 1 when j ≥ 0,

ǫ0 =h1 when j = 0.
(2.5)

The last condition gives an isolated short representation.

2.2 Null vectors and character decomposition of a long representation at the

unitarity threshold

As we have explained in the previous subsection, short representations of the d = 3 su-

perconformal algebra are of two sorts. The energy of a ‘regular’ short representation is

given by ǫ0 = j + h1 + 1. The null states of this representation transform in an irreducible

representation of the algebra. When j 6= 0 the highest weights of the primary at the

head of this null irreducible representation is given in terms of the highest weights of the

representation itself by ǫ′0 = ǫ0 + 1
2 , j′ = j − 1

2 , h′1 = h1 + 1, h′i = hi. Note that

ǫ′0−j′−h′1−1 = ǫ0−j−h1−1 = 0, so that the null states also transform in a regular short

representation. As the union of the ordinary and null states of such a short representation

is identical to the state content of a long representation at the edge of the unitarity bound,

we conclude that

lim
δ→0

χ[j+h1+1+δ, j, h1, hj ] = χ[j+h1+1, j, h1, hj ]+χ

[

j+h1+3/2, j− 1

2
, h1+1, hj

]

(2.6)

7When j 6= 0, the norm of |s2〉 had to be proportional to (ǫ0 − j − h1 − 1) simply because the norm of

|s2〉 must vanish whenever |Zn1〉 is of zero norm. The algebra that leads to this result is correct even at

j = 0 (i.e. when |Zn1〉 is ill defined).
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where χ[ǫ0, j, hi] denotes the supercharacter of the irreducible representation with energy

ǫ0, SO(3) highest weight j and SO(n) highest weights {hi}. Note that the χ s appearing

on the r.h.s. of (2.6) are the supercharacters corresponding to short representations.

On the other hand when j = 0 the null states of the regular short representation occur

at level 2 and are labelled by a primary with highest weights ǫ′0 = ǫ0 + 1, j′ = 0, h′1 =

h1 + 2, h′i = hi. Note in particular that j′ = 0 and ǫ′0 − h′1 = ǫ0 − h1 − 1 = 0. It follows

that the null states of this representation transform in an isolated short representation,

and we conclude

lim
δ→0

χ[h1 + 1 + δ, j = 0, h1, hj ] = χ[h1 + 1, j = 0, h1, hj ] + χ[h1 + 2, j = 0, h1 + 2, hj ] (2.7)

Recall that isolated short representations are separated from all other representations

with the same SO(3) and SO(n) quantum numbers by a gap in energy. As a consequence it

is not possible to ‘approach’ such representations with long representations; consequently

we have no equivalent of (2.7) at energies equal to h1 + δ.

For use below we define some notation. We will use c(j, hi) (with i = 1, 2, . . . , [n2 ])

to denote a regular short representation with SO(3) and SO(n) highest weights j, hi re-

spectively and ǫ0 = j + h1 + 1 (when j ≥ 0). We will also use the symbol c(−1
2 , h1, hj)

(with h1 ≥ h2−1) to denote the isolated short representation with SO(3) quantum number

0, SO(n) quantum numbers h1 + 1, hj (here j = 2, 3, . . . , [n2 ]) respectively and ǫ0 = h1 + 1.

The utility of this notation will become apparent below.

2.3 Indices

The state content of any unitary superconformal quantum field theory may be decomposed

into a sum of an (in general infinite number of) irreducible representations of the super-

conformal algebra. This state content is completely determined by specifying the number

of times any given representation occurs in this decomposition. Consider any linear com-

bination of the multiplicities of short representations. If this linear combination evaluates

to zero on every collection of representations that appears on the r.h.s. of each of (2.6)

and (2.7) (for all values of parameters), it is said to be an index. It follows from this

definition that indices are unaffected by all possible pairing up of short representations

into long representations, and so are invariant under any deformation of superconformal

Hilbert space under which the spectrum evolves continuously. We now proceed to list these

indices.

1. The simplest indices are simply given by the multiplicities of representations in the

spectrum that never appear on the r.h.s. of (2.7) and (2.6) (for any values of the

quantum numbers of the long representations on the l.h.s. of those equations). All

such representations are easy to list; they are SO(3) singlet isolated representations

whose SO(n) quantum number h1−|h2| ≤ 1 where h1 and h2 are both either integers

or half integers, and h1 ≥ |h2| ≥ 0.

2. We can also construct indices from linear combinations of the multiplicities of repre-

sentations that do appear on the r.h.s. of (2.7) and (2.6). The complete list of such

– 7 –
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linear combinations is given by

IM,{hj} =

M−|h2|
∑

p=−1

(−1)p+1n

{

c

(

p

2
,M − p, hj

)}

, (2.8)

where n[R] denotes the multiplicities of representations of type R and the Index label

M is the value of h1+2j for every regular short representation that appears in the sum

above. Thus M ≥ |h2| and both M and h2 are either integers or half-integers.Also

the set {hj} must satisfy the condition h2 ≥ h3 . . . . . . ≥ |h[ n
2
]| where all the hi are

either integers or all are half-integers.

2.4 Minimally BPS states: distinguished supercharge and commuting superal-

gebra

We will now describe states that are annihilated by at least one supercharge and its con-

jugate. Consider the special supercharge Q with charges (j = −1
2 , h1 = 1, hi = 0, ǫ0 = 1

2 ).

Let S = Q†; it is easily verified that

{S,Q} = ∆ = ǫ0 − (h1 + j) (2.9)

Below we will be interested in a partition function over states annihilated by Q. Clearly all

such states transform in irreducible representations of that subalgebra of the superconfor-

mal algebra that commutes with Q,S and hence ∆. This subalgebra is easily determined

to be a real form of the supergroup D(n−2
2 , 1) or B(n−3

2 , 1), depending on whether n is

even or odd. We follow the same notation as [4].

The bosonic subgroup of this commuting superalgebra is SO(2, 1) × SO(n − 2). The

usual Cartan charge of SO(2, 1) (the SO(2) rotation) and the Cartan charges of SO(n− 2)

are given in terms of the Cartan elements of the parent superconformal algebra by

E = ǫ0 + j, Hi = hi+1

(

with i = 1, 2, . . . ,

[

n − 2

2

])

. (2.10)

2.5 A Trace formula for the general Index and its character decomposition

Let us define the Witten index

IW = TrR[(−1)F exp(−β∆ +G)], (2.11)

where the trace is evaluated over any Hilbert space R that hosts a representation (not

necessarily irreducible) of the superconformal algebra. Here F is the Fermion number

operator; by the spin statistics theorem F = 2j in any quantum field theory. G is any

element of the subalgebra that commutes with {S,Q,∆}; by a similarity transformation,

G may be rotated into a linear combination of the Cartan generators of the subalgebra.

The Witten Index (2.11) receives contributions only from states that are annihilated

by both Q and S (all other states yield contributions that cancel in pairs) and have ∆ = 0.

So, it is independent of ζ. The usual arguments [6] also ensure that IW is an index;

consequently it must be possible to expand IW as a linear sum over the indices defined in

– 8 –
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the previous section. In fact it is easy to check that for any representation A(reducible or

irreducible),

IW (A) =
∑

M,{hi}

IM,{hi}χsub(M +2, hi)+
∑

{hj},h1−|h2|=0,1

n

{

c

(

− 1

2
, h1 − 1, hi

)}

χsub(h1, hi).

(2.12)

where χsub(E,Hi) (with i = 1, 2, . . . , [n−2
2 ]) is the supercharacter of the subalgebra8 with

E and Hi being the highest weights of a representation of the subalgebra in the convention

defined by (2.10). In the first term on the r.h.s. of (2.12) the sum runs over all the values

of M, {hj} for which IM,{hj} is defined (see below (2.8)). In the second term the sum runs

over all the values of the set {hj} such that h2 ≥ h3 . . . . . . ≥ |h[ n
2
]|. In order to obtain (2.13)

we have used

IW (c(j, h1, hj)) = (−1)2j+1χsub(2j + h1 + 2, hi) (2.13)

IW
(

c

(

j = −1

2
, h1, hj

))

= χsub(h1 + 1, hj) (2.14)

Equation (2.13) asserts that the set of ∆ = 0 states (the only states that contribute to

the Witten Index) in any short irreducible representation of the superconformal algebra

transform in a single irreducible representation of the commuting subalgebra. In the case

of regular short representations, the primary of the full representation has ∆ = 1. The

primary of the subalgebra is obtained by acting on the primary of the full representation

with a supercharge with quantum numbers (j = 1
2 , h1 = 1, hi = 0, ǫ0 = 1

2 ,∆ = −1). On

the other hand the highest weight of an isolated superconformal short primary itself has

∆ = 0, and so is also a primary of the commuting sub super algebra. Equation (2.12)

follows immediately from these facts.

Note that every index that appears in the list of subsection 2.3 appears as the coefficient

of a distinct subalgebra supercharacter in (2.12). As supercharacters of distinct irreducible

representations are linearly independent, it follows that knowledge of IW is sufficient to

reconstruct all superconformal indices of the algebra. In this sense (2.12) is the most

general index that is possible to construct from the superconformal algebra alone.

2.6 The Index over M theory multi gravitons in AdS4 × S7

We will now compute the Witten Index defined above in specific examples of three dimen-

sional superconformal field theories. In this subsection we focus on the world volume theory

of the M2 brane in the large N limit. The corresponding theory has supersymmetries and

16 superconformal symmetries. The bosonic subgroup of the relevant superconformal alge-

bra is SO(3, 2)×SO(8). We take the supercharges to transform in the vector representation

of SO(8); this convention is related to the one used in much of literature on this theory by

a triality flip.

8The supercharacter of a representation R is defined as χsub(R) = trR(−1)F tr eµ·H, where µ · H is some

linear combination of the Cartan generators specified by a chemical potential vector µ. F is defined to

anticommute with Q and commute with the bosonic part of the algebra. The highest weight state is always

taken to have F = 0.
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In the strict large N limit, the index over the M2 brane conformal field theory is simply

the index over the Fock space of supergravitons for M theory on AdS4×S7 [17, 18]. In order

to compute this quantity we first compute the index over single graviton states; the index

over multi gravitons is given by the appropriate Bose- Fermi exponentiation (sometimes

called the plethystic exponential).9

Single particle supergravitons in AdS4 × S7 transform in an infinite class of repre-

sentations of the superconformal algebra. The primaries for this spectrum have charges

(see [20, 21]) (ǫ0 = n
2 ,j = 0,h1 = n

2 ,h2 = n
2 , h3 = n

2 ,h4 = −n
2 ) (h1, h2, h3 and h4 denote

SO(8) highest weights in the orthogonal basis; recall Qs here are taken to transform in the

vector rather than the spinor of SO(8)) where n runs from 1 to ∞ (we are working with

the ‘U(N) theory; n = 1 would be omitted for the SU(N) theory).

It is not difficult to decompose each of these irreducible representations of the super-

conformal algebra into representations of the conformal algebra, and thereby compute the

partition function and the Index over each of these representations. The necessary decom-

positions were performed in [20], and we have verified their results independently by means

a procedure described in in appendix A. The results are listed in Table 1 below.10

It is now a simple matter to compute the Index over single gravitons. The Witten

Index for the nth graviton representation (Rn) is given by

IWRn
= Tr∆=0

[

(−1)Fxǫ0+jyH1
1 yH2

2 yH3
3

]

=
∑

q

(−1)2jqx(ǫ0+j)qχ
SO(6)
q (y1, y2, y3)

1 − x2
,

(2.15)

where q runs over all conformal representations with ∆ = 0 that appear in the decomposi-

tion of Rn in table 1. H1,H2,H3 are the Cartan charges of SO(6) in the ‘orthogonal’ basis

that we always use in this paper. χSO(6), the SO(6) character, may be computed using the

Weyl character formula. The full index over single gravitons is

Isp =

∞
∑

n=2

IWRn
+ IWR1

, (2.16)

After some algebra we find

Isp =
[

− x
(

x2 − 1
)

y1y2y
2
3 +

√
x
√
y1
√
y2

(

x3 − y2 + y1

(

x3y2 − 1
))

y
3/2
3

− x
(

x2 − 1
)

(y1 + y2) (y1y2 + 1) y3 +
√
x
√
y1
√
y2

(

y2x
3 + y1

(

x3 − y2

)

− 1
)

√
y3 − x

(

x2 − 1
)

y1y2

]

/
[

(

x2 − 1
) (√

x
√
y1
√
y2 −

√
y3

)

(√
x
√
y1
√
y3 −

√
y2

) (√
x
√
y2
√
y3 −

√
y1

) (√
x−√

y1
√
y2
√
y3

)

]

(2.17)

9The index we will calculate is sensitive to 1
16

BPS states. However, the 1
8

BPS partition function has

been calculated, even at finite N , in [19].
10Some of the conformal representations obtained in this decomposition are short (as conformal repre-

sentations) when n is either 1 or 2; the negative contributions in table 1 represent the charges of the null

states, which physically are operators set to zero by the equations of motion. See [22].
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range of n ǫ0[SO(2)] SO(3) SO(8)[orth.(Qs in vector)] ∆ contribution

n ≥ 1 n
2 0

(

n
2 ,

n
2 ,

n
2 ,

−n
2

)

0 +

n ≥ 1 n+1
2

1
2

(

n
2 ,

n
2 ,

n
2 ,

−(n−2)
2

)

0 +

n ≥ 2 n+2
2 1

(

n
2 ,

n
2 ,

(n−2)
2 , −(n−2)

2

)

0 +

n ≥ 2 n+3
2

3
2

(

n
2 ,

(n−2)
2 , (n−2)

2 , −(n−2)
2

)

0 +

n ≥ 2 n+4
2 2

(

(n−2)
2 , (n−2)

2 , (n−2)
2 , −(n−2)

2

)

1 +

n ≥ 2 n+2
2 0

(

n
2 ,

n
2 ,

n
2 ,

−(n−4)
2

)

1 +

n ≥ 3 n+3
2

1
2

(

n
2 ,

n
2 ,

(n−2)
2 , −(n−4)

2

)

1 +

n ≥ 3 n+4
2 1

(

n
2 ,

(n−2)
2 , (n−2)

2 , −(n−4)
2

)

1 +

n ≥ 3 n+5
2

3
2

(

(n−2)
2 , (n−2)

2 , (n−2)
2 , −(n−4)

2

)

2 +

n ≥ 4 n+5
2

1
2

(

n
2 ,

(n−2)
2 , (n−4)

2 , −(n−4)
2

)

2 +

n ≥ 4 n+7
2

1
2

(

(n−2)
2 , (n−4)

2 , (n−4)
2 , −(n−4)

2

)

4 +

n ≥ 4 n+6
2 1

(

(n−2)
2 , (n−2)

2 , (n−4)
2 , −(n−4)

2

)

3 +

n ≥ 4 n+4
2 0

(

n
2 ,

n
2 ,

(n−4)
2 , −(n−4)

2

)

2 +

n ≥ 4 n+6
2 0

(

n
2 ,

(n−4)
2 , (n−4)

2 , −(n−4)
2

)

3 +

n ≥ 4 n+8
2 0

(

(n−4)
2 , (n−4)

2 , (n−4)
2 , −(n−4)

2

)

6 +

n = 1 2 1
2

(

1
2 ,

1
2 ,

1
2 ,

1
2

)

1 −
n = 1 5

2 0
(

1
2 ,

1
2 ,

1
2 ,−1

2

)

2 −
n = 2 3 0 (1, 1, 0, 0) 2 −
n = 2 7

2
1
2 (1, 0, 0, 0) 2 −

n = 2 4 1 (0, 0, 0, 0) 3 −

Table 1: d=3 graviton spectrum.

The index over the Fock-space of gravitons may now be obtained from the above single

particle index using

Ifock = exp

(

∑

n

1

n
Isp(x

n, yn1 , y
n
2 , y

n
3 )

)

. (2.18)

In order to get a feel for this result, let us set yi = 1. The single graviton index reduces

to

Isp =
2
√
x (2x+

√
x+ 2)

(
√
x− 1)

2
(x+ 1)

(2.19)

In the high energy limit, x ≡ e−β → 1, this expression simplifies to Isp ≈ 20
β2 In this limit

the expression for the full Witten Index Ifock in (2.18) reduces to,

Ifock ≈ exp
20ζ(3)

β2
(2.20)
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It follows that the thermodynamic expectation value of ǫ0 + j (which we denote by Eind
av )

is given by

Eind
av = −∂ ln Ifock

∂β
=

40ζ(3)

β3
. (2.21)

The index ‘entropy’ defined by

Ifock =

∫

dy exp{(−βy) + Sind(y)}, (2.22)

evaluates to

Sind(E) =
60ζ(3)

(40ζ(3))
2
3

E
2
3 . (2.23)

It is instructive to compare this result with the relation between entropy and E com-

puted from the supersymmetric partition function, obtained by summing over all super-

symmetric states with no (−1)F — once again in the gravity approximation. The single

particle partition function evaluated on the ∆ = 0 states with all the other chemical po-

tentials except the one corresponding to E = ǫ0 + j set to zero is given by,

Zsp(x) = tr∆=0x
E =

2
√
x(x+ 1)

(

x5/2 − 2x2 + 2x3/2 + 2x− 3
√
x+ 2

)

(
√
x− 1)

4
(x2 − 1)

, (2.24)

where once again x ≡ e−β , with β being the chemical potential corresponding to E = ǫ0+j.

The bosonic and fermionic contributions to the partition function in (2.24) are respectively

given by,

Zbose
sp (x) = tr∆=0 bosonsx

E =
−
(

−x4 + 4x7/2 − 6x3 + x2 − 4x3/2 + 6x− 4
√
x
)

(1 −√
x)

5
(
√
x+ 1) (x+ 1)

(2.25)

Z fermi
sp (x) = tr∆=0 fermionsx

E =
−
(

−x4 + x2 − 4x3/2
)

(1 −√
x)

5
(
√
x+ 1) (x+ 1)

(2.26)

To obtain the index on the Fock space, we need to multi-particle the partition function

above with the correct Bose-Fermi statistics. This leads to

Zfock = exp
∑

n

Zbose
sp (xn) + (−1)n+1Z fermi

sp (xn)

n
. (2.27)

We find, that for β ≪ 1

lnZfock =
63ζ(6)

β5
, (2.28)

and a calculation similar to the one done above yields

S(E) =
378ζ(6)

(315ζ(6))
5
6

E
5
6 . (2.29)

which is the growth of states with energy of a six dimensional gas, an answer that could

have been predicted on qualitative grounds. Recall that the theory of the worldvolume
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letter ǫ0 j [h1, h2, h3, h4] ∆ = ǫ0 − j − h1

φa 1
2 0 [12 ,

1
2 ,

1
2 ,−1

2 ] 0

ψa 1 1
2 [12 ,

1
2 ,

1
2 ,

1
2 ] 0

∂/ψa = 0 2 1
2 [12 ,

1
2 ,

1
2 ,

1
2 ] 1

∂2φa = 0 5
2 0 [12 ,

1
2 ,

1
2 ,−1

2 ] 2

Table 2: Spectrum for the single M2 brane.

of the M2 brane has 4 supersymmetric transverse fluctuations and one supersymmetric

derivative. Bosonic supersymmetric gravitons are in one to one correspondence with ‘words’

formed by acting on symmetric combinations of these scalars with an arbitrary number of

derivatives. Consequently, supersymmetric gravitons are labelled by 5 integers ni, nd (the

number of occurrences of each of these four scalars i = 1 . . . 4 and the derivative nd) and

the energy of these gravitons is E = 1
2 (
∑

i ni) + nd. This is the same as the formula for

the energy of massless photons in a five spatial dimensional rectangular box, four of whose

sides are of length two and whose remaining side is of unit length, explaining the effective

six dimensional growth.

We conclude that the growth of states in the effective index entropy is slower than the

growth of supersymmetric states in the system; this is a consequence of partial Bose-Fermi

cancellations (due to the (−1)F ).

2.7 The Index on the worldvolume theory of a single M2 brane

We will now compute our index over the worldvolume theory of a single M2 brane. For this

free theory, the single particle state content is just the representation corresponding to n = 1

in table 1 of the previous subsection. This means that it corresponds to the representation

of the d = 3 superconformal group with the primary having charges ǫ0 = 1
2 , j = 0 and

SO(8) highest weights (in the convention described above) [12 ,
1
2 ,

1
2 ,−1

2 ].

For the reader’s convenience, we reproduce the conformal multiplets that appear in

this representation in the table above. Physically, these multiplets correspond to the 8

transverse scalars, their fermionic superpartners and the equations of motion for each of

these fields.11

The Index over these states is

Isp
M2

(x, yi) = Tr
[

(−1)Fxǫ0+jyH1
1 yH2

2 yH3
3

]

=
x

1
2 (1 + y1y2 + y1y3 + y2y3) − x

3
2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1 − x2)

(2.30)

For simplicity, let us set yi → 1. Then, we find

Isp
M2

(x, yi = 1) =
4x

1
2

1 + x
(2.31)

11Please see [23, 24] and references therein for more details on this worldvolume theory and [25] for some

recent work.
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Multiparticling this index, to get the index over the Fock space on the M2 brane, we find

that

IM2(x, yi = 1) = exp
∑

n≥1

IM2(x
n, yi = 1)

n

=





∏

n≥0

1 − x2n+ 3
2

1 − x2n+ 1
2





4 (2.32)

At high temperatures x ≡ e−β → 1, the index grows as

IM2 |x→1,yi=1 =

(

β

2

)−2

(2.33)

The single particle supersymmetric partition function, obtained by summing over all

∆ = 0 single particle states with no (−1)F is,

Zsusy,sp
M2

(x, yi) = Tr∆=0

[

xǫ0+jyH1
1 yH2

2 yH3
3

]

=
x

1
2 (1 + y1y2 + y1y3 + y2y3) + x

3
2 (y1 + y2 + y3 + y1y2y3)

(y1y2y3)
1
2 (1 − x2)

(2.34)

Setting yi → 1,

Zsusy,sp
M2

(x, yi = 1) =
4x

1
2

1 − x
(2.35)

with individual contributions from bosons and fermions being

Zsusy,sp,bose
M2

(x) = tr∆=0 bosonsx
E =

4x
1
2

(1 − x2)

Zsusy,sp,fermi
M2

(x) = tr∆=0 fermionsx
E =

4x
3
2

(1 − x2)

(2.36)

Finally, multi-particling this partition function with the appropriate bose-fermi statistics,

we find that

ZM2(x, yi = 1) =





∏

n≥0

1 + x2n+ 3
2

1 − x2n+ 1
2





4

(2.37)

At high temperatures x→ 1, the supersymmetric partition function grows as

ZM2(x→ 1, yi = 1) ≈ exp

{

π2

2β

}

(2.38)

Note, that this partition function grows significantly faster at high temperatures than the

index (2.32).
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letter ǫ0 j h ∆ = ǫ0 − j − h

φ 1
2 0 1

2 0

φ∗ 1
2 0 −1

2 1

ψ 1 1
2

−1
2 1

ψ∗ 1 1
2

1
2 0

∂µ 1 {±1, 0} 0 {0, 2, 1}
∂µσ

µψ = 0 2 1
2

−1
2 2

∂µσ
µψ∗ = 0 2 1

2
1
2 1

∂2φ = 0 5
2 0 1

2 2

∂2φ∗ = 0 5
2 0 −1

2 3

Table 3: Spectrum of the free Chern Simons matter theory.

2.8 Index over Chern Simons matter theories

In this subsection, we will calculate the Witten Index described above for a class of the

superconformal Chern Simons matter theories recently studied by Gaiotto and Yin [10].

The theories studied by these authors are three dimensional Chern Simons gauge theories

coupled to matter fields; we will focus on examples that enjoy invariance under a superal-

gebra consisting of 4 Qs and 4 Ss (i.e. the R symmetry of these theories is SO(2)). The

matter fields, which may thought of as dimensionally reduced d = 4 chiral multiplets, carry

the only propagating degrees of freedom. The general constructions of Gaiotto and Yin

allow the possibility of nonzero superpotentials with a coupling α that flows in the infra-red

to a fixed point of order 1
k where k is the level of the Chern Simons theory. In our analysis

below we will focus on the limit of large k. In this limit, the theory is ‘free’ and moreover

we may treat 1
k as a continuous parameter. The arguments above then indicate index that

we compute below for the free theory will be invariant under small deformations of 1
k .

Consider this free conformal 3 dimensional theory on S2. We are interested in cal-

culating the letter partition function (i.e. the single particle partition function) for the

propagating fields which comprise a complex scalar φ and its fermionic superpartner ψ.

This may be done by enumerating all operators, linear in these fields, modulo those op-

erators that are set to zero by the equations of motion. We will be interested in keeping

track of several charges: the energy ǫ0, SO(3) angular momentum j, SO(2) R-charge h

and ∆ = ǫ0 − h− j of our states. The table above (which lists these charges) is useful for

that purpose The last four lines, with equations of motion count with minus signs in the

partition function. The list above comprises two separate irreducible representations of the

superconformal algebra. φ, ψ and derivatives on these letters make up one representation.

The other representation consists of the conjugate fields.

Let the partition functions over these two representations be denoted by z1 and z2.
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We find

z1[x, y, t] = trφ,ψ,...(x
2ǫ0y2jth) =

t
1
2x(1 + x2) + t

−1
2 x2(y + 1/y)

(1 − x2y2)(1 − x2/y2)

z2[x, y, t] = trφ∗,ψ∗,...(x
2ǫ0y2jt2h) =

t
−1
2 x(1 + x2) + t

1
2x2(y + 1/y)

(1 − x2y2)(1 − x2/y2)

(2.39)

The index (2.11) over single particle states is obtained by setting t→ 1/x, y → −1

I1[x] = z1[x,−1, 1/x] = tr((−1)F (x)2ǫ0−h) =
x

1
2

1 − x2

I2[x] = z2[x,−1, 1/x] = tr((−1)Fx2ǫ0−h) =
−x 3

2

1 − x2

I[x] = I1[x] + I2[x] =
x

1
2

1 + x

(2.40)

In terms of these quantities, the index of the full theory is given by [26, 27]

IW =

∫

DU exp

[

∞
∑

n=1

∑

m

I(xn)

n
TrRm(Un)

]

(2.41)

where m run over the chiral multiplets of the theory, which are taken to transform in

the Rm representation of U(N), and TrRm is the trace of the group element in the Rth
m

representation of U(N).

In the large N limit the integral over U in (2.41) may be converted into an integral

over the eigenvalue distribution of U , ρ(θ), which, in turn, may be computed via saddle

points.12 The Fourier coefficients of this eigenvalue density function are given by:

ρn =

∫ π

−π
ρ(θ) cos(nθ) (2.42)

2.8.1 Adjoint matter

In order to get a feel for this formula, we specialize to a particular choice of matter field

content. We consider a theory with c matter fields all in the adjoint representation. In the

large N limit the Index is given by

I(x) = Trcoloursinglets(−1)Fx2ǫ0−h

=

∫

dρn exp

(

−N2
∞
∑

n=1

1

n
(1 − cI[xn])ρ2

n

)

(2.43)

The behaviour of this Index as a function of x is dramatically different for c ≤ 2 and c ≥ 3.

In order to see this note that at any given value of x, the saddle point occurs at ρ(θ) = 1
2π

i.e ρ0 = 1, ρn = 0, n > 0 provided that [26, 27]

1 − cI[xn] > 0,∀n (2.44)

12Note that Nρ(θ)dθ gives the number of eigenvalues between eiθ and ei(θ+dθ) and
R π

−π
ρ(θ)dθ =

1, ρ(θ) ≥ 0.
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In this case the saddle point contribution to the Index vanishes; the leading contribution

to the integral is then from the Gaussian fluctuations about this saddle point. Under these

conditions the logarithm of the Index or the ’free-energy’ 13 is then of order 1 in the 1
N

expansion.

It is easy to check that (2.44) is satisfied at all values of x (which must lie between

zero and one in order for (2.11) to be well defined) when c ≤ 2. On the other hand, if c ≥ 3

this condition is only met for

x <

(

1

2

(

c−
√

c2 − 4
)

)2

(2.45)

At this value of x the coefficient of ρ2
1 in (2.43) switches sign and the saddle point above

with a uniform eigenvalue distribution is no longer valid. The new saddle point that

dominates this integral above this value of x, has a Gross-Witten type gap in the eigenvalue

distribution. The Index undergoes a large N first order phase transition at the critical

temperature listed in (2.45). At and above this temperature the ’free-energy’ is of order N2.

Note that I(1) = 1
2 . It follows that the Index is well defined even at strictly infinite

temperature This is unlike the logarithm of the actual partition function of the same

theory, whose x → 1 limit scales like N2/(1 − x)2 as x → 1 (for all values of c) reflecting

the T 2 dependence of a 2+1 dimensional field theory. This difference between the high

temperature limits of the Index and the partition function reflects the large cancellations

of supersymmetric states in their contribution to the Index.

2.8.2 Fundamental matter

As another special example, let us consider a theory whose Nf matter fields all transform

in the fundamental representation of U(N). We take the Veneziano limit: Nc → ∞, c =
Nf

Nc

fixed. The index for the theory is now given by

I(x) = Trcoloursinglets(−1)Fx2ǫ0−h

=

∫

dρn exp(−N2
∞
∑

n=1

(ρn − cI[xn])2 − c2I[xn]2

n
)

(2.46)

At low temperatures the integral in (2.46) is dominated by the saddle point

ρn = cI(xn) (2.47)

As the temperature is raised the integral in (2.46) undergoes a Gross-Witten type phase

transition when c is large enough. This is easiest to appreciate in the limit c ≫ 1. In this

limit ρ1 = 1
2 in the low temperature phase when at x ≈ 1

4c2
, and ρn = 1

2ncn−1 ≪ 1. At

approximately this value of x the low temperature eigenvalue distribution ρ(θ) formally

turns negative at θ = π. This is physically unacceptable (as an eigenvalue density is, by

definition, intrinsically positive). In actual fact the system undergoes a phase transition at

this value of x. At large c this phase transition is very similar to the one described by Gross

13We use this term somewhat loosely, since we are referring here to an index and not a partition function
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and Witen in [28] and in a more closely related context by [29]. The high temperature

eigenvalue distribution is ‘gapped’ i.e. it has support on only a subset (centered about zero)

of the interval (−π, π).

For this phase transition to occur, we need c ≥ 3. To arrive at this result, we notice

that the distribution (2.47) implies

lim
x→1−

ρ(π) = lim
x→1−

ρ(−π) =
1

π

(

1

2
− c

4

)

(2.48)

So, for c ≥ 3, ρ(π) would always turn negative for some value of x. Beyond this temperature

the saddle point (2.47) is no longer valid.

3. d=6

3.1 The superconformal algebra and its unitary representations

The bosonic subalgebra of the d = 6 superconformal algebra is SO(6, 2) ⊗ Sp(2n) (the

conformal algebra times the R symmetry algebra). The anticommuting generators in this

algebra may be divided into the generators of supersymmetry (Q) and the generators of

superconformal symmetries (S). Supersymmetry generators transform in the fundamental

representation of the R-symmetry group Sp(2n),14 have charge half under dilatations (the

SO(2) factor of the compact SO(6) ⊗ SO(2) ∈ SO(6, 2)) and are chiral spinors under the

SO(6) factor of the same decomposition. Superconformal generators Sµi = (Qiµ)
† transform

in the anti-chiral spinor representation of SO(6), have scaling dimension (dilatation charge)

(−1
2 ), and also transform in the anti-fundamental representation of the R-symmetry group.

The charges of these generators are given in more detail in appendix B. In our notation

for supersymmetry generators i is an SO(6) spinor index while µ is an R symmetry vector

index.

The commutation relations for this superalgebra are described in detail in [4]. As usual,

the anticommutator between two supersymmetries is proportional to momentum times anR

symmetry delta function, and the anticommutator between two superconformal generators

is obtained by taking the Hermitian conjugate of these relations. The most interesting

relationship in the algebra is the anticommutator between Q and S. Schematically

{Sµi , Qjν} ∼ δµν T
j
i − δjiM

µ
ν

Here T ij are the U(4) ∼ SO(6) × SO(2) generators and Mµν are the Sp(2n) generators.

The energy ǫ0, SO(6) highest weight ( denoted by h1, h2 and h3 in the orthogonal basis15)

and the R-symmetry highest weights (k, k1 . . . , k(n−1)) of primary states form a complete

set of labels for the representation in question. We use a non-standard normalization for

the R-symmetry weights. In particular,

k =
ko

2
, ki =

koi
2

(3.1)

14With our conventions, Sp(2n) is of rank n. Sp(2) = SO(3) and Sp(4) = SO(5).
15hi are eigenvalues under rotations in orthogonal 2 planes in Rn. Thus, for instance, {hi} = (1, 0, 0) in the

vector representation. They are either integer or half integer and satisfy the constraint h1 ≥ h2 ≥ |h3| ≥ 0.
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Here [ko, koi ] are the highest weights of Sp(2n) in the orthogonal basis.16 As we have

noted above, at the level of the algebra, SO(2) × SO(6) ∼ U(4). We will sometimes find

it convenient to label primaries by eigenvalues ci under the generators T ii ≡ Ti of U(4)17

rather than by the energy and SO(6) weights. For any highest weight (c1, c2, c3, c4) the

eigenvalues satisfy c1 ≥ c2 ≥ c3 ≥ c4 ≥ 0 and ci s are always integers. For future reference

we note the change of basis between the Cartan elements ǫ0, h1, h2, h3 (the energy and 3

orthogonal SO(6) Cartan generators) and T1, T2, T3, T4:

ǫ0 =
1

2
(T1 + T2 + T3 + T4)

h1 =
1

2
(T1 + T2 − T3 − T4)

h2 =
1

2
(T1 − T2 + T3 − T4)

h3 =
1

2
(T1 − T2 − T3 + T4)

(3.2)

As in the case of the d = 3 algebra, any irreducible representation of the superconformal

algebra may be decomposed into a finite number of distinct irreducible representations of

the conformal algebra. The latter are labeled by their own conformal primary states, which

have a definite lowest energy and transform in a given irreducible representation of SO(6).

We will now analyse the constraints imposed by unitarity on the quantum numbers

of primary states; for this purpose we will find it convenient to use the U(4) labeling

of primaries introduced above. Let Qiµ i = 1, · · · , 4. and µ = ±1, · · · ,±n denote the

supersymmetry whose charge under U(4) Cartan Tj are δij and under the R-symmetry

Cartan Mν is (sign ofµ)×δν|µ|. The superconformal generators are Sµi = (Qiµ)
† and therefore

they have the same charges as Qiµ but with opposite sign.

3.2 Norms and null states

In this subsection we study unitarity restrictions (and the resultant structure of null states)

of representations of the superconformal algebra. This analysis turns out to be a little more

intricate than its d = 3 counterpart.

As we have seen above, states in the same representation of the superconformal algebra

do not all have the same norm. However states that lie within the same representation

of the maximal compact subgroup of the algebra, U(4) × Sp(2n), do have the same norm.

Consequently, in order to examine the constraints from unitarity, we need only examine

one state per representation of this compact subalgebra.

In order to study the restrictions imposed by unitarity at level ℓ we should, in principle,

study all states obtained by acting with the tensor product of an arbitrary combination

of ℓ supersymmetries on the set of primary states of an irreducible representation of the

superconformal algebra. This set of states may be Clebsh Gordan decomposed into a sum

of irreducible representations of U(4)×Sp(2n); and we should compute the norm of at least

16In the orthogonal basis, the Cartans of Sp(2n) are 2n × 2n matrices with elements

diag(iσ2, 0, 0 . . .), diag(0, iσ2, 0, 0, . . .), . . ., where each 0 is shorthand for a 2 × 2 matrix.
17In the defining representation of U(4) (Ti)

a
b = δa

i δi
b.
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one state in each of these representations, and ensure its positivity in order to guarantee

unitarity. However this problem is significantly simplified by the observation that the

most stringent condition on unitarity occurs in those states that transform in the ‘largest’

Sp(2n) [5]. Now it is easy to construct a state in the largest Sp(2n) representation: one

simply acts on those primary states that are Sp(2n) highest weight with ℓ Sp(2n) highest

weight supersymmetries, i.e. supersymmetries of the form Qi1. This prescription completely

fixes the Sp(2n) quantum numbers of the states we will study in this section. All that

remains is to study the decomposition of all such states into irreducible representations of

U(4) and to compute the norm of one state in each of these representations.

The decomposition of the states of interest into U(4) representations at level ℓ is easily

performed using Young tableaux techniques. The set of U(4) tableaux for representations

of the descendants is obtained by adding ℓ boxes to the tableaux of the primary in all

possible ways that give rise to a legal tableaux, subject to the restriction that no two ‘new’

boxes occur on the same row (this restriction is forced on us by the antisymmetry of the Qi1
operators). Note, that in this decomposition, no representation occurs more than once.18

It is not too difficult to find an explicit formula for the highest weight states of each of

these representations. Let us define the operators
(

Ai =
∑i

j=1Q
j
1Υ

i
j

)

i = 1, · · · , 4 where

Υi
j are functions of the U(4) generators defined by

Υj
j =Identity (no sum over j)

Υ4
1 = −

[

T 2
1 T

3
2 T

4
3

(

(T3−T4+1)(T2−T4+2)

(T3 − T4)(T2 − T4 + 1)

)

− T 3
2 T

4
3 T

2
1

(

T3−T4+1

T3 − T4

)

−T 4
3 T

2
1 T

3
2

(

T2−T4+2

T2−T4+1

)

+T 4
3 T

3
2 T

2
1

](

1

T1− T4+2

)

Υ4
2 = −

(

T 4
3 T

3
2 − T 3

2 T
4
3

(

T3 − T4 + 1

T3 − T4

))(

1

T2 − T4 + 1

)

Υ4
3 = − T 4

3

(

1

T3 − T4

)

Υ3
1 = −

(

T 3
2 T

2
1 − T 2

1 T
3
2

(

T2 − T3 + 1

T2 − T3

))(

1

T1 − T3 + 1

)

Υ3
2 = − T 3

2

(

1

T2 − T3

)

Υ2
1 = − T 2

1

(

1

T1 − T2

)

(3.3)

The operators Ai have been determined to have the following property: when acting on

a highest weight state |ψ〉 of U(4) with quantum numbers (c1, c2, c3, c4), A
i|ψ〉 is another

highest weight state of U(4) with quantum numbers (ci1, c
i
2, c

i
3, c

i
4) where cij = cj + δji ,

18For a generic primary tableaux the number of representations obtained at level ℓ is
`

4
ℓ

´

corresponding

to the choice of which rows the new boxes are appended to. If the U(4) highest weights of the primary are

c1, c2, c3, c4, the representation obtained by appending new boxes to the rows Ri1 , Riℓ has highest weights

ci1 . . . ciℓ
increased by one, while all other weights are unchanged.
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whenever it is well defined. The last condition (being well defined) is met if and only if the

weights of |ψ〉 obey the inequality ci < ci−1.
19

Let |ψ〉 denote the primary state that is a U(4) highest weight. It follows that the

states Ai1 . . . Aiℓ |ψ〉 is the highest weight state in the representation with additional boxes

in the rows i1 . . . iℓ described above. We will now study the norm of these states.

It is not difficult to explicitly verify that (when this state is well defined)

|Ai|ψ〉|2 ∝ (ci − 2k − i+ 1) ≡ Bi(ci, k) (3.4)

More generally, it is also true that

|
l
∏

m=1

Aim |ψ〉|2 ∝
l
∏

m=1

Bi(cim , k) (3.5)

where the proportionality factor in (3.5) is a function of the the SU(3) weights ci − cj
of the representation but is independent of the energy.20 In order to see this note that

different states of the form (3.5), obtained by interchanging the order of the Aim operators,

are each proportional to the highest weight state of a given representation. Now no U(4)

representation occurs more than once in the tensor product of supersymmetry generators

with the primary, these representations are proportional to each other. As the commutator

of Ai operators is independent of energy, it follows that the proportionality factor between

these states is also independent of energy.

Now the norm of the state in (3.5) clearly has a factor of Bil(ci) in it. However

upon interchanging the order of the Ai factors, the same result is true for Bim for each of

m = 1 to l. The norm of a state at level ℓ is a polynomial of degree ℓ in the energy of

the state. It follows that the full energy dependence of the norm of this state is given as

in (3.5); the proportionality factor in that equation is a function only of SU(3) weights and

is independent of energy.

The proof presented above, strictly speaking, applies only when each of the operators

Aim has well defined action on |ψ〉. However, as the algebra involved in computing (3.5) is

smooth (it does not care about the values of ci provided only that the state on the l.h.s.

of (3.5) is well defined), and so the result (3.5) continues to apply, whenever the state

whose norm is being computed is well defined.

The unitarity restrictions and short representations of this superconformal algebra now

follow almost immediately from (3.5). First consider the generic case representation where

(c1 > c2 > c3 > c4). All states listed in (3.5) are well defined in this case and it follows

c4 − 3− 2k ≥ 0 is necessary and sufficient for unitarity. Representations that saturate this

bound are short; the zero norm primary state is

|Z4〉 = A4|h.w〉 (3.6)

19This is rather intuitive; when this condition is not met, the set (ci
1, c

i
2, c

i
3, c

i
4) do not constitute a valid

set of labels for an irreducible representation of U(4).
20More precisely, the proportionality factor is a function of the ci that is invariant under a uniform

constant shift of each ci.
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consistent with the result of [7].

The state (3.5) is not well defined when c3 = c4. However even in this case the state
(

A4A3
)

|ψ〉 is well defined provided c2 6= c3. The norm of this state is proportional to

B4 × B3. A little thought shows that the necessary and sufficient condition for unitarity

is either B4 ≥ 0 (this is (3.6)) or that B3 = 0. In the later case the representation is

short, and its level one zero norm primary is A3|ψ〉. On the other hand when B4 = 0 the

representation is also short. It’s zero norm primary occurs at level 2 and is
(

A4A3
)

|ψ〉.
It is clear that this pattern generalizes simply. If c4 = c3 = c2 but c2 6= c1 then the

necessary and sufficient condition for unitarity is either B4 ≥ 0 or B3 = 0 or B2 = 0. When

B2 = 0 the zero norm primary occurs at level one and is given by A2|ψ〉. When B3 = 0 the

zero norm primary occurs at level 2 and is given by
(

A3A2
)

|ψ〉. When B4 = 0 the zero

norm primary occurs at level 3 and is given by
(

A4A3A2
)

|ψ〉.
Finally when c4 = c3 = c2 = c1 the necessary and sufficient condition for unitarity is

either B4 ≥ 0 or B3 = 0 or B2 = 0 or B1 = 0. When B1 = 0 the level one primary is given

by A1|ψ〉. When B2 = 0 the level two primary is given by
(

A2A1
)

|ψ〉. When B3 = 0 the

level three primary is given by
(

A3A2A1
)

|ψ〉. When B4 = 0 the level four primary is given

by
(

A4A3A2A1
)

|ψ〉.
We may translate the analysis of zero norm states above into SO(2) × SO(6) notation

by using the transformations of (3.2). This yields the result that representations are short

if the energy ǫ0 and SO(6) weights hi satisfy one of the following conditions (see [4, 5])

ǫ0 =h1 + h2 − h3 + 4k + 6, when h1 ≥ h2 ≥ |h3|.
ǫ0 =h1 + 4k + 4, when h1 ≥ h2 and h2 = h3.

ǫ0 =h1 + 4k + 2, when h1 = h2 = h3 6= 0.

ǫ0 =4k, when h1 = h2 = h3 = 0.

(3.7)

The last three conditions give isolated short representations.

3.3 Null vectors and character decomposition of a long representation at the

unitarity threshold

As discussed in the previous subsection, just like d = 3 the short representations of d = 6

super-conformal algebra can be broadly classified into two types, the regular ones and the

isolated ones. However unlike d = 3 here the isolated short representations are of three

kinds as we describe below. The energy of a regular short representations is given by

ǫ0 = h1 + h2 − h3 + 4k + 6. The null states of this representation also transform in an

irreducible representation of the algebra; for h1 > h2 and h2 − 1
2 > |h3 − 1

2 | the highest

weights of the primary at the head of this (null) irreducible representation (which occurs at

level 1) are given in terms of the highest weight of the representation by ǫ′0 = ǫ0 + 1
2 , h′1 =

h1− 1
2 , h′2 = h2− 1

2 , h′3 = h3 + 1
2 , k′ = k+ 1

2 , k′i = ki (where i = 1, 2, . . . ., (n−1)) and

k, ki are half the weights of the R-symmetry group Sp(2n) in the orthogonal basis as defined

in subsection (§§ 3.1). Note that ǫ′0−h′1−h′2 +h′3−4k′−6 = ǫ0−h1−h2 +h3−4k−6 = 0,

so that the null states also transform in a regular short representation. As union of the

ordinary and null state of such short representations is identical to the state content of a
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long representation at the edge of the unitarity bound, we conclude that,

lim
δ→0

χ[h1+h2 − h3 + 4k + 6 + δ, h1, h2, h3, k, ki]

= χ[h1 + h2 − h3 + 4k + 6, h1, h2, h3, k, ki]

+ χ

[

h1 + h2 − h3 + 4k +
13

2
, h1 −

1

2
, h2 −

1

2
, h3 +

1

2
, k +

1

2
, ki

]

,

(with h1 > h2 > |h3| ≥ 0).

(3.8)

where χ(ǫ0, h1, h2, h3, k, ki) denotes the character of the irreducible representation of super-

conformal algebra with energy ǫ0, SO(6) highest weight (h1, h2, h3) and Sp(2n) highest

weight (k, ki).

On the other hand, when h1 > h2 = h3(= h, say) the null states of the regular

short representation occur at level 2 and are labelled by a primary with highest weights

ǫ′0 = ǫ0 + 1, h′1 = h1 − 1, h′2 = h2 = h, h′3 = h3 = h, k′ = k + 1, k′i = ki, where

ǫ0, hi, k, ki refer to the highest weights of the original representation. Note in particular

that h′2 = h′3 and ǫ′0 − h′1 − 4k′ − 4 = ǫ0 − h1 − h2 + h3 − 4k − 6 = 0. It follows that

the null states of this representation transforms in an isolated short representation and we

conclude,

lim
δ→0

χ[h1 + 4k + 6 + δ, h1, h, h, k, ki] =χ[h1 + 4k + 6, h1, h, h, k, ki]

+ χ[h1 + 4k + 7, h1 − 1, h, h, k + 1, ki]

(with h1 > h2 = h3 = h ≥ 0).

(3.9)

As we have discussed earlier isolated short representations are separated from all other

representations with the same SO(6) and Sp(2n) quantum numbers by a gap in energy.

Hence it is not possible to approach such a representation with long representations; con-

sequently we have no equivalent of (3.9) at energies equal to h1 + 4k + 7 + δ.

Similarly when h1 = h2 = h3(= h 6= 0) the null states of the regular representation

occur at level 3 and are labelled by a primary with highest weights ǫ′0 = ǫ0 + 3
2 , h′1 =

h− 1
2 , h′2 = h− 1

2 , h′3 = h− 1
2 , k′ = k + 3

2 . Note in particular that h′1 = h′2 = h′3 and

ǫ′0 −h′1 − 4k′− 2 = ǫ0 −h1 − 4k− 6 = 0. Consequently the null states of this representation

transforms in an isolated short representation, and we conclude,

lim
δ→0

χ[h+ 4k + 6 + δ, h, h, h, k, ki ] =χ[h+ 4k + 6, h, h, h, k, ki ]

+ χ

[

h+ 4k +
15

2
, h− 1

2
, h− 1

2
, h− 1

2
, k +

3

2
, ki

]

.

(with h1 = h2 = h3 = h > 0)

(3.10)

As explained above, we have no equivalent of (3.10) at energies equal to h + 4k + 15
2 + δ

which corresponds to the unitarity bound for an isolated short representation.

Finally when h1 = h2 = h3 = 0 the null states of the regular representation occur

at level 4 and are labelled by primary with highest weights ǫ′0 = ǫ0 + 2, h′1 = h1 =
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notation for rep. ǫ0 SO(6) Sp(2n) nature

highest highest of rep

weight weight

c(h1, h2, h3, k, ki) h1 + h2 − h3 + 4k + 6 (h1, h2, h3) (k, ki) regular

(with h1 ≥ h2 ≥ |h3| short

and k ≥ 0)

c(h1, h− 1
2 , h+ 1

2 , k, ki) h1 + 4k + 11
2 (h1 − 1

2 , h, h) (k + 1
2 , ki) isolated

(with h1 ≥ h+ 1
2 short

h ≥ 0 and k ≥ −1
2)

c(h, h, h + 1, k, ki) h+ 4k + 6 (h, h, h) (k + 1, ki) isolated

(with h ≥ 0 short

and k ≥ −1)

c(−1
2 ,−1

2 ,
1
2 , k, ki) 4k + 6 (0, 0, 0) (k + 3

2 , ki) isolated

(with k ≥ −3
2 short

Table 4: Notations for short representations.

0, h′2 = h2 = 0, h′3 = h3 = 0, k′ = k + 2, k′i = ki. Note in particular that in this

case h′1 = h′2 = h′3 = 0 and ǫ′0 − 4k′ = ǫ0 − 4k − 6 = 0. Therefore the null states of this

representation transform in an isolated short representation and we conclude,

lim
δ→0

χ[4k + 6 + δ, 0, 0, 0, k, ki ] = χ[4k + 6, 0, 0, 0, k, k − i]+χ[4k + 8, 0, 0, 0, k + 2, ki].

(with h1 = h2 = h3 = 0)

(3.11)

There is no equivalent of (3.11) at energies equal to 4k + 6 + δ.

As in the previous section, the analysis of the character formulae above and the defi-

nition of indices is much simplified by the introduction of some additional notation. Given

a short representation we will use the notation c(h1, h2, h3, k, ki) to refer to this represen-

tation where the relationship between the numbers hi, k, ki and the highest weights of the

representation in question is defined in table 4.

3.4 Indices

As in the d = 3 case, we define an index for d = 6 as any linear combination of the

multiplicities of short representations that evaluates to zero on every collection of repre-

sentations that appear on the r.h.s. of (3.8), (3.9), (3.10),and (3.11) so that it is invariant

under any deformation of superconformal field theory under which the spectrum evolves

continuously. We now proceed to list all of these indices,
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1. The simplest indices are given by the multiplicities of short representations in the

spectrum that never appear on the r.h.s. of (3.8), (3.9), (3.10),and (3.11) (for any val-

ues of the quantum numbers on the l.h.s. of those equations). All such representations

are easy to list; they are

• c(h1, h− 1
2 , h+ 1

2 , k, ki) for all h1 ≥ h+ 1
2 , h ≥ 0 and k − k1 = −1

2 , 0.

• c(h, h, h + 1, k, ki) for all h ≥ 0 and k − k1 = −1,−1
2 , 0

• c(−1
2 ,−1

2 ,
1
2 , k, ki) for k − k1 = −3

2 ,−1,−1
2 , 0

In all the above cases we must consider all the possible values of the set ki, i =

1 . . . n− 1. This means k1 ≥ k2 ≥ . . . ≥ kn−1 ≥ 0 and the ki may each be integers or

half integers.

2. We can also construct indices from linear combinations of the multiplicities of repre-

sentations that do appear on the r.h.s. of (3.8), (3.9), (3.10),and (3.11). The complete

list of such linear combinations is given by,

IM1,M2,M3,{ki} =

2(M1−k1)
∑

p=M3−1

(−1)p+1n

{

c

(

M2 +
p

2
,
p

2
,M3 −

p

2
,M1 −

p

2
, ki

)}

, (3.12)

where n{R} denotes the number of representations of type R and the Index labels

M1, M2 and M3 are respectively the values of h2+k, h1−h2 and M3 = h2+h3 for the

regular representations that appears in the above sum. Here M2 and M3 are integers

greater than or equal to zero and M1 is an integer or half integer with M1 ≥ M3
2 +k1.

3.5 Minimally BPS states: distinguished supercharge and commuting superal-

gebra

Consider the special Q with charges (h1 = −1
2 , h2 = −1

2 , h3 = 1
2 , k = 1

2 , ǫ0 = 1
2). Let

S = Q†; it is then easily verified that,

2{S,Q} ≡ ∆ = ǫ0 − (h1 + h2 − h3 + 4k) (3.13)

Just as in d = 3, we shall define a partition function over states annihilated by Q.

Again all such states transform in an irreducible representation of the subalgebra of the

superconformal algebra that commutes with Q,S and hence ∆. This subalgebra is easily

determined to be the supergroup D(3, n−2
2 ) (see [4]).

The bosonic subgroup of this commuting superalgebra is SU(3, 1) ⊗ Sp(n − 2). The

usual Cartan charges of SU(3, 1) and the Cartan charges of Sp(n − 2) are given in terms

of the Cartan elements of the full superconformal algebra by,

E = 3ǫ0 + h1 + h2 − h3;H1 = h1 − h2;H2 = h2 + h3;Ki = ki+1, (3.14)
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where E is the U(1) Cartan, (H1,H2) are the SU(3) Cartans (in the Dynkin basis) and Ki

are the Sp(n− 2) Cartans (in the orthogonal basis).21

3.6 A trace formula for the general index and its character decomposition

As in the case of d = 3, we define the Witten index as,

IW = TrR[(−1)F exp (−ζ∆ + µG)], (3.15)

Where the trace is evaluated over any Hilbert space that hosts a representation of

the d = 6 superconformal algebra. Here F is the fermion number operator; by the spin

statistics theorem, in any quantum field theory we take F = 2h2. G is any element of the

subalgebra that commutes with the set set {Q,S,∆}; by a similarity transformation , G

may always be rotated in to a linear combination of the subalgebra Cartan generators.

The Witten index (3.15) receives contributions only from the states that are annihilated

by both Q and S (all other states yields contribution that cancel in pairs) and, hence, have

∆ = 0. So it is independent of ζ. The usual arguments [6] also ensure that IW is also

an index and hence it should be possible to expand IW as a linear combination of the

indices defined in the previous section. In fact is easy to check that for any representation

A (reducible or irreducible) of the d = 6 superconformal algebra,

Iwi(A) =
∑

M1,M2,M3,{ki}

IM1,M2,M3χsub(M2,M3, ki, 4(M2 −M3) + 12M1 + 24)

+
∑

{ki},k−k1=− 3
2
,−1,− 1

2
,0

n

{

c

(

− 1

2
,−1

2
,
1

2
, k, ki

)}

χsub(0, 0, ki, 12k + 18)

+
∑

{ki},h≥0,k−k1=−1,− 1
2
,0

(−1)2h+1n{c(h, h, h + 1, k, ki)}χsub(0, 2h + 1, ki, 4h + 12k + 20)

+
∑

{ki},h1,h(h1≥h≥0),k−k1=− 1
2
,0

(−1)2hn{c(h1, h, h+1, k, ki)}χsub(h1−h, 2h+1, ki, 4h1+12k+20).

(3.16)

where χsub(H1,H2,Ki, E) is the supercharacter of the representation with highest weights

H1,H2,Ki, E as defined in (3.14). In the first sum in (3.16) M2 and M3 run over integers

greater than or equal to zero and M1 runs over integers or half integers with M1 ≥ M3
2 +k1.

Also the set {ki} runs over integer and half integer values satisfying the condition k1 ≥
k2 · · · ≥ kn. In order to obtain (3.16) we have used,

Iwi[(c(h1, h2, h3,k, ki)(with h1 ≥ h2 ≥ |h3| and k ≥ 0)] =

(−1)2h2+1χsub(h1 − h2, h2 + h3, ki, 4(h1 + h2 − h3) + 12k + 24).
(3.17)

21Specifically the Cartans H1 and H2 are the following 3 × 3 SU(3) matrices,

H1 =

0

B

@

0 0 0

0 1 0

0 0 −1

1

C

A
, H2 =

0

B

@

1 0 0

0 −1 0

0 0 0

1

C

A

.
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Iwi
[

c(h1, h, h + 1, k, ki)

(

with h1 ≥ h ≥ 0 and k ≥ −1

2

)]

=

(−1)2h+1χsub(h1 − h, 2h+ 1, ki, 4h1 + 12k + 20).

(3.18)

Iwi[(c(h, h, h + 1, k, ki)(with h ≥0 and k ≥ −1)] =

(−1)2h+1χsub(0, 2h + 1, ki, 4h+ 12k + 20).
(3.19)

Iwi
[

c

(

− 1

2
,−1

2
,
1

2
, k, ki

)(

with k ≥ −3

2

)]

= χsub(0, 0, ki, 12k + 18). (3.20)

Equations (3.17)-(3.20) follow from the observation that the set of ∆ = 0 states (the only

states that contribute to the Witten index) in any short representation of the supercon-

formal algebra transform in a single representation of the commuting super subalgebra.

The quantum numbers of these representations of the subalgebra are easily determined,

given the quantum numbers of the parent short representation. In the case of regular short

representations, a primary of the subalgebra representation (in which the ∆ = 0 states

transform)is obtained by the acting on the highest weight primary of the full representa-

tion (which turns out to have ∆ = 6) with supercharges Q1, Q2 and Q3 with quantum

numbers (h1 = 1
2 , h2 = 1

2 , h3 = 1
2 , k = 1

2 , ki = 0, ǫ0 = 1
2), (h1 = 1

2 , h2 = −1
2 , h3 = −1

2 , k =
1
2 , ki = 0, ǫ0 = 1

2 ) and (h1 = −1
2 , h2 = 1

2 , h3 = −1
2 , k = 1

2 , ki = 0, ǫ0 = 1
2) respectively, all of

which has ∆ = −2. The Witten index evaluated over these representations in terms of the

supercharacter of the subgroup is given by (3.17).

In the case of isolated representations the highest weight primary of the full represen-

tation turns out to have ∆ = 4, 2 and 0; for the ∆ = 4 case the primary of the subalgebra

is obtained by the action of Q1 and Q2 on the primary of the full superconformal algebra,

and for ∆ = 2 case it is obtained by the action of Q1. The highest weight of an isolated

superconformal short which itself has ∆ = 0 is also a primary of the commuting subalgebra.

The Witten index evaluated over these representations in terms of the supercharacter of

the subgroup is given by (3.18), (3.19) and (3.20).

Note that every index that appears in the list of subsection §§ 3.4 appears as the

coefficient of a distinct subalgebra supercharacter in (3.16). As supercharacters of distinct

irreducible representations are linearly independent, it follows that knowledge of IW is

sufficient to reconstruct all superconformal indices of the algebra. In this sense (3.16) is

the most general index that can be constructed from the superconformal algebra alone.

3.7 The Index over M theory multi gravitons in AdS7 × S4

We now compute the Witten Index defined for the for the world volume theory of the M5

brane in the large N limit. The R-symmetry for this algebra is SO(5) corresponding to

rotations in the 5 directions transverse to the brane. This is consistent with the formalism

above because SO(5) ∼ Sp(4). We will use the symbols l1, l2 to represent the SO(5) Cartans

in the orthogonal basis. The Sp(4) Cartans are given by:

k =
l1 + l2

2
, k1 =

l1 − l2
2

(3.21)
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Note, also that the bosonic part of the commuting subalgebra is SU(3, 1) ⊗ Sp(2). In the

calculation below, we will us the equivalence Sp(2) ∼ SU(2). The SU(2) charge is the same

as the Sp(2) charge.

In the strict large N limit, the spectrum of this theory is the Fock space of super-

gravitons of M theory on AdS7 × S4 [17, 18].22 The set of primaries for the graviton

spectrum is (ǫ0 = 2p, l1 = 2p, l2 = 0, h1 = 0, h2 = 0, h3 = 0) [30],23 where p can be any

positive integer. Now given a highest weight state, we again use the procedure described

in appendix A to obtain the representations (of the maximal compact subgroup) occurring

in the supermultiplet. The result is enumerated in table 5 and agrees with [30]. By the

action of momentum operators on this states we can build up the entire representation of

the superconformal algebra.

It is now again simple to compute the Index over single gravitons once we have the

spectrum. The Witten Index for the pth graviton representation (Rp)(i.e. for a particular

value of p in the primary), is obtained by

IWRp
=Tr∆=0

[

(−1)FxEzK1yH1
1 yH2

2

]

=
∑

q

(−1)2(h2)qx(3ǫ0+h1+h2−h3)qχ
SU(2)
q (z)χ

SU(3)
q (y1, y2)

(1 − x4y1)(1 − x4y2
y1

)(1 − x4

y2
)

,
(3.22)

where q runs over all the conformal representations with ∆ = 0 that appears in the

decomposition of Rp in table 5; x, z, y1 and y2 are the exponential of the chemical potentials

corresponding to the subgroup charges E,K1,H1 and H2 respectively as defined in (3.14);

χSU(2) and χSU(3) denote the characters of the groups SU(2) and SU(3) respectively, which

are computed using the Weyl character formula.

The Index over the single particle states is then simply given by the following sum,

IWsp =

∞
∑

p=3

IWRp
+ IWR2

+ IWR1
, (3.23)

Performed this sum, we find that the single particle contribution to the index is

IWsp =
term1 + term2

den

term1 = x6
(√
zy2

1

(

1 − x8y2

)

x2 +
√
zy2

(

1 − x8y2

)

x2
)

term2 = x6
(

y1

(

−
√
zx10 +

√
zy2

2x
2 +

(

x12 − 1
)

(z + 1)y2

))

den =
(√
zx12 − (z + 1)x6 +

√
z
) (

x4y1 − 1
) (

x4 − y2

) (

x4y2 − y1

)

.

(3.24)

The index over the Fock-space of gravitons can be obtained from the above single

particle index by the formula (2.18).

22The index we will calculate is sensitive to 1
16

BPS states. However, the 1
4

BPS partition function has

been calculated, even at finite N , in [19].
23we specify the highest weight of the maximal compact subgroup; ǫ0 being the SO(2) charge, l1 and l2

being the SO(5) charges in orthogonal basis and h1, h2 and h3 being the SO(6) charge also in the orthogonal

basis.
24The ‘+’ appears because the conformal representation we subtract is, itself short. See [22] for details
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range of p ǫ0[SO(2)] SO(6)[orth.] SO(5)[orth.] ∆ contribution

p ≥ 1 2p (0, 0, 0) (p, 0) 0 +

p ≥ 1 2p + 1
2 (1

2 ,
1
2 ,

1
2) (2p−1

2 , 1
2) 0 +

p ≥ 1 2p + 1 (1, 1, 1) (p− 1, 0) 2 +

p ≥ 2 2p + 1 (1, 0, 0) (p− 1, 1) 0 +

p ≥ 2 2p + 3
2 (3

2 ,
1
2 ,

1
2) ( (2p−3)

2 , 1
2) 2 +

p ≥ 2 2p + 2 (2, 0, 0) (p− 2, 0) 4 +

p ≥ 3 2p + 3
2 (1

2 ,
1
2 ,−1

2) (2p−3
2 , 3

2) 0 +

p ≥ 3 2p + 2 (1, 1, 0) (p− 2, 1) 2 +

p ≥ 3 2p + 5
2 (3

2 ,
1
2 ,−1

2) ( (2p−5)
2 , 1

2) 4 +

p ≥ 3 2p + 3 (1, 1,−1) (p− 3, 0) 6 +

p ≥ 4 2p + 2 (0, 0, 0) (p− 2, 2) 2 +

p ≥ 4 2p + 5
2 (1

2 ,
1
2 ,

1
2) (2p−5

2 , 3
2) 4 +

p ≥ 4 2p + 3 (1, 0, 0) (p− 3, 1) 6 +

n ≥ 4 2p + 7
2 (1

2 ,
1
2 ,−1

2) (2p−7
2 , 1

2) 8 +

p ≥ 4 2p + 4 (0, 0, 0) (p− 4, 0) 12 +

p = 1 7
2 (1

2 ,
1
2 ,−1

2) (1
2 ,

1
2) 0 −

p = 1 4 (1, 1, 0) (0, 0) 2 −
p = 1 4 (0, 0, 0) (1, 0) 2 −
p = 1 5 (1, 0, 0) (0, 0) 4 +24

p = 1 6 (0, 0, 0) (0, 0) 6 −
p = 2 6 (0, 0, 0) (1, 1) 2 −
p = 2 13

2 (1
2 ,

1
2 ,

1
2) (1

2 ,
1
2) 4 −

p = 2 7 (1, 0, 0) (0, 0) 6 −

Table 5: d=6 graviton spectrum.

To get a sense for the formula, let us set z, yi → 1 in (3.24) leaving only x ≡ e−β.

We remind the reader that β is the chemical chemical potential corresponding to E =

3ǫ0 + h1 + h2 − h3. This leads to

IWsp (x)
∣

∣

z,yi→1
=

x6
(

2x4 + x2 + 2
)

(x8 + x6 − x2 − 1)2
. (3.25)

We note that in the high energy limit when x→ 1, IWsp in (3.25) becomes IWsp = 5
144β2 .

Then by the use of (2.18) we have,

IWfock = exp
5ζ(3)

144β2
. (3.26)

Then the average value of E = 3ǫ0 + h1 + h2 − h3 is given by,

E = −∂ ln IWfock

∂β
=

5ζ(3)

72β3
. (3.27)
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If we define an entropy like quantity S by

IWfock =

∫

dy exp (−βy) expSind(y), (3.28)

we find,

Sind(E) =
5ζ(3)/48

(5ζ(3)/72)
2
3

E
2
3 . (3.29)

We can also do a similar analysis with the partition function instead of the index. The

single particle partition function evaluated on the ∆ = 0 states with all the other chemical

potentials except β set to zero is given by,

Zsp(x) = tr∆=0x
E =

−x6
(

−2x8 + x6 + x2 − 2
)

(1 − x2)5 (x2 + 1) (x4 + x2 + 1)2
(3.30)

The separate contribution of the bosonic and fermionic states to the partition function

in (3.30) are as follows,

Zbose
sp (x) = tr∆=0 bosons =

x6
(

3x10 − x6 + 2
)

(1 − x4)3 (1 − x6)2
(3.31)

Z fermi
sp (x) = tr∆=0 fermions =

x8
(

2x10 − x4 + 3
)

(1 − x4)3 (1 − x6)2
(3.32)

An analysis similar to that done for the Index, yields for the above partition function

lnZfock =
∑

n

Zbose
sp (xn) + (−1)n+1Z fermi

sp

n
=

7ζ(6)

2048β5
(3.33)

S(E) =
21ζ(6)/1024

(35ζ(6)/2048)
5
6

E
5
6 , (3.34)

which is again similar to that of a six dimensional gas for reasons that are similar to those

explained below equation (2.29). Note, that in this case, we have 2 transverse supersym-

metric scalars and 3 derivatives.

3.8 The Index on the worldvolume theory of a single M5 brane

We will now compute our index over the worldvolume theory of a single M5 brane. For

this free theory, the single particle state content is just the representation corresponding

to p = 1 in table 5 of the previous subsection. This means that it corresponds to the

representation of the d = 6 superconformal group with the primary having charges ǫ0 = 2,

SO(6) highest weights [0, 0, 0] and R-symmetry SO(5) highest weight [1, 0]. Physically,

this multiplet corresponds to the 5 transverse scalars, real fermions transforming as chiral

spinors of both SO(6) and SO(5) and a self-dual two form Bµν . See [31, 23, 24] and

references therein for more details. Using table 5, we calculate the Index over these states

Isp
M5

(x, z, y1, y2) = Tr
[

(−1)FxEzK1yH1
1 yH2

2

]

=
x6(z

1
2 + 1

z
1
2
) − x8

(

y2 + y1
y2

+ 1
y1

)

+ x12

(1 − x4y1)
(

1 − x4 y2
y1

)(

1 − x4

y2

)

(3.35)
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Specializing to the chemical potentials yi → 1, z → 1, the index simplifies to

Isp
M5

(x, z = 1, yi = 1) =
2x6 − 3x8 + x12

(1 − x4)3
(3.36)

Multiparticling this index, to get the index over the Fock space on the M2 brane, we find

that

IM5(x, z = 1, yi = 1) = exp
∑

n

Isp
M5

(xn, z = 1, yi = 1)

n

=
∏

n1,n2,n3

(

1 − x8+4(n1+n2+n3)
)3

(

1 − x6+4(n1+n2+n3)
)2 (

1 − x12+4(n1+n2+n3)
)

(3.37)

At high temperatures x ≡ e−β → 1, we find

IM5|x→1,yi=1 = exp

{

π2

32β

}

(3.38)

The supersymmetric single particle partition function, on the other hand is given by

Zsp,susy
M5

(x, z, y1, y2) = Tr∆=0

[

xEzK1yH1
1 yH2

2

]

=
x6(z

1
2 + 1

z
1
2
) + x8

(

y2 + y1
y2

+ 1
y1

)

+ x12

(1 − x4y1)
(

1 − x4 y2
y1

)(

1 − x4

y2

)

(3.39)

In particular, setting z, yi = 1, we find

Zsp,susy
M5

(x, z = 1, yi = 1) =
2x6 + 3x8 + x12

(1 − x4)3
(3.40)

with contributions from the bosons and fermions being

Zsp,susy,bose
M5

(x) = tr∆=0 bosonsx
E =

2x6 + x12

(1 − x4)3

Zsp,susy,fermi
M5

(x) = tr∆=0 fermionsx
E =

3x8

(1 − x4)3

(3.41)

Multiparticling this result, we find

ZM5(x, z = 1, yi = 1) = exp
∑

n

Zsp,susy
M5

(xn, z = 1, yi = 1)

n

=
∏

n1,n2,n3

(

1 + x8+4(n1+n2+n3)
)3

(

1 − x6+4(n1+n2+n3)
)2 (

1 − x12+4(n1+n2+n3)
)

(3.42)

At high temperatures x→ 1, we find that

ZM5(x→ 1, z = 1, yi = 1) ≈ exp

{

45ζ(4)

512β3

}

(3.43)
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4. d=5

4.1 The superconformal algebra and its unitary representations

In d = 5, the bosonic part of the superconformal algebra is SO(5, 2) ⊗ SU(2). Under the

SO(5) ⊗ SO(2) subgroup of the conformal group the supersymmetry generators Qiµ i =

1, · · · , 4 and µ = ±1
2 transform as the spinors of SO(5), with charge 1

2 under SO(2). The

R-symmetry group is SU(2) and µ above is an SU(2) index. We use k to represent the

SU(2) Cartan. The SO(5) Cartans in the orthogonal basis are denoted by h1, h2. We will

use ǫ0 to represent the energy which is measured by the charge under SO(2). To lighten

the notation, we will use the same symbols to represent the eigenvalues of states under

these Cartans.

With these conventions the Qs have ǫ0 = 1
2 , k = ±1

2 and SO(5) charges:

Q1 →
(

1

2
,
1

2

)

, Q2 →
(

1

2
,−1

2

)

Q3 →
(

− 1

2
,
1

2

)

, Q4 →
(

− 1

2
,−1

2

) (4.1)

The superconformal generators Sµi are the conjugates of Qiµ and therefore their charges are

the negative of the charges above.

The anticommutator between Q and S is given by

{Sµi , Qjν} ∼ δµν

(

T ji

)

− δjiM
µ
ν (4.2)

Here T ji and Mµ
ν are the SO(5, 2) and SU(2) generators respectively.

As in the previous sections, by diagonalizing this operator one can determine when a

descendant of the primary will have zero norm. Performing this analysis [4], one finds that

short representations can exist when the highest weights of the primary satisfy one of the

following conditions

ǫ0 =h1 + h2 + 3k + 4 when h1 ≥ h2 ≥ 0 and k ≥ 0,

ǫ0 =h1 + 3k + 3, when h2 = 0 and k ≥ 0,

ǫ0 =3k, when h1 = h2 = 0, and k ≥ 0.

(4.3)

The last two conditions give isolated short representations.

4.2 Null vectors and character decomposition of a long representation at the

unitarity threshold

As in the case of d = 3, 6, and as explained in the previous section the short representations

of d = 5 are also either regular or isolated. The energy of a regular short representation is

given by ǫ0 = h1 + h2 + 3k + 4. Again the null states of such a representation transform

in an irreducible representation of the algebra; for h1 6= 0 6= h2 the highest weight of the

primary at the head of this null irreducible representation is given in terms of the highest

weight of the primary of the representation itself by ǫ′0 = ǫ0 + 1
2 , k′ = k + 1

2 , h′1 =
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h1 − 1
2 , h′2 = h2 − 1

2 . We note that ǫ′0 − h′1 − h′2 − 3k′ − 4 = ǫ0 − h1 − h2 − 3k − 4 = 0,

which shows that the null states also transform in a regular short representation. Thus a

long representation at the edge of this unitarity bound has the same state content as the

union of ordinary and null states of such a regular short representation. So we conclude

that,

lim
δ→0

χ(h1+h2+3k+4+δ, h1, h2, k] =χ(h1 + h2 + 3k + 4, h1, h2, k)

+ χ

(

h1 + h2 + 3k +
9

2
, h1 −

1

2
, h2 −

1

2
, k +

1

2

)

,

(

with h1 ≥ h2 ≥ 1

2
and k ≥ 0

)

.

(4.4)

where χ(ǫ0, h1, h2, k) is the character of the irreducible representation with energy ǫ0, SO(5)

highest weights(in the orthogonal basis) (h1, h2) and SU(2) highest weight k.

Now when h1 ≥ 1, h2 = 0 the null states of the regular short representation occur at

level two and are characterized by a primary with the highest weights ǫ′0 = ǫ0 + 1, k′ =

k + 1, h′1 = h1 − 1, h′2 = 0. Now we note that h′1 6= 0, h′2 = 0 and ǫ′0 − h′1 − 3k′ − 3 =

ǫ0 −h1 − 3k− 4 = 0, and so we conclude that the null states of such a type of regular short

representation transform in an isolated short representation. Thus for a long representation

at the edge of such a unitarity bound we have,

lim
δ→0

χ(h1 + 3k + 3 + δ, h1, h2 = 0, k) =χ(h1 + 3k + 3, h1, h2 = 0, k)

+ χ(h1 + 3k + 4, h1 − 1, h2 = 0, k + 1).

h1 ≥ 1, k ≥ 0

(4.5)

Finally when h1 = 0 = h2 the null states of the regular short representation occur at

level four and are labeled by a primary with the highest weight ǫ′0 = ǫ0+2, k′ = k+2, h′1 =

0, h′2 = 0. Here we note that h′1 = 0 = h′2 and ǫ′0−3k′ = ǫ0−3k−4 = 0, which shows that

the null states of this type of regular short representation again transforms in an isolated

short representation but the isolated short representation encountered here is different from

the one encountered in the previous paragraph. Thus for long representations at the edge

of this unitarity bound we have,

lim
δ→0

χ(3k + δ, h1 = 0, h2 = 0, k) = χ(3k, 0, 0, k) + χ(3k + 2, 0, 0, k + 2), k ≥ 0. (4.6)

Thus we see that the isolated short representations (as defined in the previous sub-

section) are separated from other representations with the same SO(5) and SU(2) weights

by a finite gap in energy so it is not possible to approach such representations with long

representations and therefore we do not have any equivalent of (4.5) or (4.6) at energies

near h1 = 3k + 3 (when h1 ≥ 1, h2 = 0) or near 3k (when h1 = 0 = h2) with k ≥ 0 in both

the cases.

For use below we define the following notation. Let c(h1, h2, k) denote a regular short

representation with SO(5) and SU(2) highest weights (h1, h2) and k respectively, and with
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ǫ0 = h1 +h2 +3k+4 (when h1 ≥ h2 ≥ 0). We now extend this notation to include isolated

short representations.

• c(h1,−1
2 , k) with h1 > 0 and k ≥ −1

2 denotes the representation with SO(5) weights

(h1 − 1
2 , 0) and SU(2) quantum number k + 1

2 and with ǫ0 = h1 + 3k + 4.

• c(−1
2 ,−1

2 , k) with k ≥ −3
2 denotes the representation with SO(5) weights (0, 0) and

SU(2) quantum number k + 3
2 and ǫ0 = 3k + 9

2 .

4.3 Indices

As in the previous cases of d = 3, 6 for d = 5 an Index is defined to be any linear combi-

nation of multiplicities of short representations that evaluates to zero on every collection

of collection of representations that appears on the r.h.s. of (4.4), (4.5) and (4.6).We now

list these Indices.

1. The multiplicities of short representations which never appear on the R.H.S of (4.4),

(4.5) and (4.6). These are c(−1
2 ,−1

2 , k) for k = 0,−1
2 ,−1,−3

2 and c(h1,−1
2 , k) for all

h1 > 0 and k = 0,−1
2 .

2. The complete list of indices constructed from linear combinations of the multiplicities

of representations that appear on the r.h.s. of (4.4), (4.5) and (4.6) is given by,

I
(1)
M1,M2

=

2M2
∑

p=−1

(−1)p+1n

{

c

(

M1 +
p

2
,
p

2
,M2 −

p

2

)}

, (4.7)

where n{R} denotes the multiplicities of representations of type R, and the Index

label M1 and M2 are the values of h1 − h2 = h1 − p
2 and h2 + k = p

2 + k for every

regular representation that appears in the sum above. Here M1 can be a integer

greater than or equal to zero and M2 is an integer or half integer greater than or

equal to zero.

4.4 Minimally BPS states: distinguished supercharge and commuting superal-

gebra

We consider the special Q with charges (h1 = −1
2 , h2 = −1

2 , k = 1
2 , ǫ0 = 1

2). Let S =Q†

then we have,

∆ ≡ {S,Q} = ǫ0 − (h1 + h2 + 3K) (4.8)

We are now interested in a partition function over states annihilated by this special Q. Such

states transform in an irreducible representation of the subalgebra of the superconformal

algebra that commutes with {Q,S,∆}. This subalgebra turns out to be SU(2, 1). Note

that unlike d = 3, 6 this subalgebra is a bosonic lie algebra, and not a super lie algebra.

In the subalgebra, we will label states by their weights under the Cartan elements Hs
1 ,H

s
2 ,

which are defined in terms of the Cartans of the full algebra by:

Hs
1 = h1 − h2, Hs

2 = ǫ0 +
h1 + h2

2
. (4.9)

Here, h1, h2 are the Cartans of the SO(5) algebra in the orthogonal basis and ǫ0 represents

the charge under SO(2).
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4.5 A trace formula for the general index and its character decomposition

We define the Witten Index,

Iw = TrR[(−1)F exp(−ζ∆ + µG)], (4.10)

where the trace being evaluated over any Hilbert Space that hosts a reducible or irreducible

representation of the d = 5 superconformal algebra. HereG is any element of the subalgebra

that commutes with the set {S,Q,∆} and F = 2h1. It is always possible to express

G as a linear combination of the subalgebra Cartans (as given by (4.9)) by a similarity

transformation. Once again, the Witten Index is independent of ζ.

It is easy to check that the Witten Index IW evaluated on any representation A (re-

ducible or irreducible) is given by,

IW (A) =
∑

M1,M2

I
(1)
M1,M2

χsub

(

M1,
3

2
M1 + 3(M2 + 2)

)

+
∑

h1(≥
1
2
);k=− 1

2
,0

n

{

c

(

h1,−
1

2
, k

)}

χsub

(

h1 +
1

2
,
3

2
h1 + 3k +

21

4

)

+
∑

k=− 3
2
,−1,− 1

2
,0

n

{

c

(

− 1

2
,−1

2
, k

)}

χsub

(

0, 3k +
9

2

)

(4.11)

with χsub(H
s
1 ,H

s
2) is the character of a representation of the subgroup, with highest weights

(Hs
1 ,H

s
2) in the conventions described above.

In order to obtain (4.11) we have used,

Iwi(c(h1, h2, k)) = (−1)2h2+1χsub

(

h1 − h2,
3

2
(h1 + h2) + 3k + 6

)

(4.12)

Iwi
(

c

(

h1,−
1

2
, k

))

= χsub

(

h1 +
1

2
,
3

2
h1 + 3k +

21

4

)

(4.13)

Iwi
(

c

(

− 1

2
,−1

2
, k

))

= χsub

(

0, 3k +
9

2

)

(4.14)

Note that the states with ∆ = 0 in any short representation (which are the states

that contribute to the Witten Index), may be organized into a single irreducible represen-

tation of the subalgebra that commutes with Q. The quantum numbers of this subalgebra

representation may be determined in terms of the quantum numbers of the parent short

representation. For a regular short representation the primary of the full representation has

∆ = 4 so the highest weight state of the representation of the subalgebra is reached by act-

ing on it with the supercharges Q1, Q2, Q3 with the charges (h1 = 1
2 , h2 = 1

2 , k = 1
2 , ǫ0 = 1

2 ),

(h1 = 1
2 , h2 = −1

2 , k = 1
2 , ǫ0 = 1

2), (h1 = −1
2 , h2 = 1

2 , k = 1
2 , ǫ0 = 1

2). These have

∆ = −2,−1,−1 respectively. Similarly an isolated short representation of type c(h1,−1
2 , k)

with h1 > 0 and k ≥ −1
2 has ∆ = 3 and is acted upon by Q1 and Q2 in order to reach

the highest weight state of the representation of the subalgebra. Finally the isolated short

representations of type c(−1
2 ,−1

2 , k) with k ≥ −3
2 have ∆ = 0 and are themselves the

highest weight states of the representation of the subalgebra.
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We finally note that every Index constructed in subsection §§ 4.3 appears as the coef-

ficient of a distinct subalgebra character in (4.11). Thus IW may be used to reconstruct

all superconformal Indices of the algebra which makes it the most general Index that is

possible to construct from the algebra alone.

5. Discussion

In this paper we have presented formulae for the most general superconformal Index for

superconformal algebras in 3, 5 and 6 dimensions. Our work generalizes the analogous

construction of an index for four dimensional conformal field theories presented in [7].

We hope that our work will find eventual use in the study of the space of super-

conformal field theories in 3, 5 and 6 dimensions. It has recently become clear that the

space of superconformal field theories in four dimensions is much richer than previously

suspected [32]. The space of superconformal field theories in d = 3, 5, 6 may be equally

intricate, although this question has been less studied. As our index is constant on any

connected component in the space of superconformal field theories, it may play a useful

role in the study of this space.

In this paper we have also demonstrated that the most general superconformal index,

in all the dimensions that we have studied, is captured by a simple trace formula. This

observation may turn out to be useful as traces may easily be reformulated as path inte-

grals, which in turn can sometimes be evaluated, using either perturbative techniques or

localization arguments.

The two dimensional index — the elliptic genus — has played an important role in

the understanding of black hole entropy from string theory. However the four dimensional

index defined in [7] does not seem to capture the entropy of black holes in any obvious way.

It would be interesting to know what the analogous situation in in 3 and 6 dimensions. It

would certainly be interesting, for instance, if the index for the theory on the world volume

of the M2 of M5 brane underwent a large N transition as a function of chemical potentials,

to a phase whose index entropy scales like N
3
2 and N3 respectively. As we currently lack

a computable framework for multiple M2 or M5 branes we do not know if this happens;

however see [25] for recent interesting progress in this respect.

In this connection we also note that the index for the weakly coupled Chern Simons

theories studied in this paper does undergo a large N phase transition as a function of

temperature. It would be interesting to have a holographic dual description of these phase

transitions.
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A. The Racah-Speiser algorithm

In this appendix, we describe the Racah-Speiser algorithm, that may be used to determine

the state content of the supergraviton representations described in tables 1 and 5. This

appendix is out of the main line of this paper, since this state content may also be found

in [20, 30, 21]

First, we remind the reader how irreducible representations of Lie Algebras, and affine

Lie Algebras may be constructed using Verma modules [33, 34]. A nice description that is

particularly applicable to our situation is provided in [35].

One starts by decomposing the algebra (G) as:

G = G+ ⊕H⊕ G− (A.1)

where G+(G−) corresponds to the positive (negative) roots of G and H is the Cartan

subalgebra.

To construct the Verma module V corresponding to a lowest weight |Ω〉, one considers

the linear space made up of the states P (G+)|Ω〉 where P is any polynomial of the positive

generators.

One may calculate the character of this module,

χV(µ) = trVe
µ·H (A.2)

where µ is a vector in the dual space of H. The Weyl group W of the algebra has a natural

action on H and this induces a natural action on µ. Finally, to obtain the character of the

irreducibe representation R(Ω), one symmetrizes χV with respect to W.

χR(Ω) =
∑

w∈W

χV(w(µ)). (A.3)

One may now read off the list of states in R using χR(Ω).

Let us elucidate the method above by constructing the character of a representation of

SU(2) of weight j. If J± denote the raising and lowering operators and J3 be the Cartan,

then the Verma module corresponding to a lowest weight state of weight |−j〉 is spanned by

the states (J+)l| − j〉 with l = 0, 1, 2, . . .. The character for this Verma module is given by,

(χV)j(x) = trxJ3 =
∞
∑

l=0

x−j+l =
x−j+1

1 − x
, (A.4)

The Weyl group of SU(2) is Z2 which has two elements. One is just the identity. The

other takes x → x−1. So the character of the irreducible representation corresponding to

the highest weight j is given by

χj(x) =
xj+1

x− 1
+

x−j−1

x−1 − 1
=
xj+

1
2 − x−j−

1
2

x
1
2 − x−

1
2

. (A.5)

The corresponding theory for superalgebras is not as well known but was developed

following the work of Kac [36]. Its application to the 4 dimensional superconformal algebra
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may be found in [35, 16]. Here, although we do not have a proof of this algorithm from

first principles, we have followed the natural generalization of the procedure described

in [16, 37, 38] for superconformal algebras in d = 4.

Starting with a lowest weight state one acts on this state with all the ‘raising’ operators

of the algebra(which includes the supersymmetry generators). Then, one discards null

states and all their descendants as explained in the sections above. This process results in

a Verma module.

The character of this Verma module is particularly easy to construct. Although the

exact structure of null vectors may be quite complicated as, for example, in section 3.2,

the charges characterizing the null state (which is all that is important for the character)

are always obtained by adding the charges of a particular supercharge (or combination

of supercharges) to the charges of the primary. So, the character of the Verma module

may be obtained by counting all possible actions of supercharges except for the specific

combinations that lead to null states or their descendants.

One now symmetrizes this character over the Weyl group of the maximal compact

subgroup to obtain the character of the irreducible representation corresponding to our

highest weight.

B. Charges

In this appendix, explicitly list the charges of the supersymmetry generators in the world-

volume theory of the M2 and M5 branes and also for the superconformal algebra in

d = 5. For the M2 brane, we have 16 supersymmetry generators ‘Q’. We use the no-

tation [ǫ0, j, h1, h2, h3, h4], where ǫ0 is the energy, j the SO(3) charge and h1, h2, h3, h4 are

the SO(8) charges in the orthogonal basis (with a choice of Cartans in which the Qs are in

the vector). With this notation, the Qs have charges

Q1 =

[

1

2
,
1

2
, 1, 0, 0, 0

]

; Q2 =

[

1

2
,
1

2
,−1, 0, 0, 0

]

,

Q3 =

[

1

2
,
1

2
, 0, 1, 0, 0

]

; Q4 =

[

1

2
,
1

2
, 0,−1, 0, 0

]

,

Q5 =

[

1

2
,
1

2
, 0, 0, 1, 0

]

; Q6 =

[

1

2
,
1

2
, 0, 0,−1, 0

]

,

Q7 =

[

1

2
,
1

2
, 0, 0, 0, 1

]

; Q8 =

[

1

2
,
1

2
, 0, 0, 0,−1

]

,

Q9 =

[

1

2
,−1

2
, 1, 0, 0, 0

]

; Q10 =

[

1

2
,−1

2
,−1, 0, 0, 0

]

,

Q11 =

[

1

2
,−1

2
, 0, 1, 0, 0

]

; Q12 =

[

1

2
,−1

2
, 0,−1, 0, 0

]

,

Q13 =

[

1

2
,−1

2
, 0, 0, 1, 0

]

; Q14 =

[

1

2
,−1

2
, 0, 0,−1, 0

]

,

Q15 =

[

1

2
,−1

2
, 0, 0, 0, 1

]

; Q16 =

[

1

2
,−1

2
, 0, 0, 0,−1

]

.

, (B.1)
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For the M5 brane, we again have 16 supercharges. Here, we use the notation

[ǫ0, h1, h2, h3, l1, l2] where ǫ0 is the SO(2) charge, h1, h2, h3 are the SO(6) charges in the

orthogonal basis and l1, l2 are the SO(5) charges in the orthogonal basis. With his notation,

the Qs have charges

Q1 =

[

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]

, Q2 =

[

1

2
,
1

2
,−1

2
,−1

2
,
1

2
,
1

2

]

,

Q3 =

[

1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2

]

, Q4 =

[

1

2
,−1

2
,
1

2
,−1

2
,
1

2
,
1

2

]

,

Q5 =

[

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−1

2

]

, Q6 =

[

1

2
,
1

2
,−1

2
,−1

2
,
1

2
,−1

2

]

,

Q7 =

[

1

2
,−1

2
,−1

2
,
1

2
,
1

2
,−1

2

]

, Q8 =

[

1

2
,−1

2
,
1

2
,−1

2
,
1

2
,−1

2

]

, (B.2)

Q9 =

[

1

2
,
1

2
,
1

2
,
1

2
,−1

2
,
1

2

]

, Q10 =

[

1

2
,
1

2
,−1

2
,−1

2
,−1

2
,
1

2

]

,

Q11 =

[

1

2
,−1

2
,−1

2
,
1

2
,−1

2
,
1

2

]

, Q12 =

[

1

2
,−1

2
,
1

2
,−1

2
,−1

2
,
1

2

]

,

Q13 =

[

1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2

]

, Q14 =

[

1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2

]

,

Q15 =

[

1

2
,−1

2
,−1

2
,
1

2
,−1

2
,−1

2

]

, Q16 =

[

1

2
,−1

2
,
1

2
,−1

2
,−1

2
,−1

2

]

.

Finally, we also specify the d = 5 supercharges. We specify their charges in the

notation[ǫ0, h1, h2, k], where ǫ0 is the energy, h1, h2 are the SO(5) charges in the orthogonal

basis and k is the Sp(2) R-symmetry charge.

Q1 =

[

1

2
,
1

2
,
1

2
,
1

2

]

, Q2 =

[

1

2
,
1

2
,−1

2
,
1

2

]

Q3 =

[

1

2
,−1

2
,
1

2
,
1

2

]

, Q4 =

[

1

2
,−1

2
,−1

2
,
1

2

]

(B.3)

Q5 =

[

1

2
,
1

2
,
1

2
,−1

2

]

, Q6 =

[

1

2
,
1

2
,−1

2
,−1

2

]

Q7 =

[

1

2
,−1

2
,
1

2
,−1

2

]

, Q8 =

[

1

2
,−1

2
,−1

2
,−1

2

]
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